Транспорт со2 кровью. Формы транспорта. Значение карбоангидразы. Регуляция образования эритроцитов

Существует фактор перехода О2 и СО2, называется диффузионная способность легких. Это способность газа проникать через легочные мембраны за 1 мин. При изменении давления на 2 мм рт.ст. в норме диффузионная способность легких для О2 равна 25-35 мл/мин, при изменении давления на 1 мм рт.ст.. для СО2 24 раза выше. Скорость диффузии зависит от след. факторов.:

1. От разности парциального давления

2. От диффузионной способности

3. От перфузии

Транспорт газов кровью. Газы могут быть в растворенном состоянии и физически связанном. Кол-во газа зависит от парциального давления газа над жидкостью и от коэффициента растворимости. Чем выше давление газа и меньше температура, чем больше газа будет растворяться в жидкости, растворение газа в жидкости показывает коэффициент растворимости. Для О2 коэффициент растворимости равен 0,022, а для СО2 0,51. В артериальной крови при парциальном давлении О2 100мм рт.ст. в растворенном состоянии находится 0,3%. СО2 при парциальном давлении 40 мм рт.ст. в растворенном состоянии находится 2,5%.

Транспорт О2. Большая часть О2 переносится кровью в виде химического соединения с гемоглобином. Направление реакции зависит от парциального давления, О2 и содержание оксигемоглобина в крови отражается кривой диссоциации оксигемоглобина. Эту зависимость меду парциальным давлением и кол-вом оксигемоглобина вывел ученый Бак Форд. При 40 мм рт.ст. 80% гемоглобина насыщается О2, а при 60мм рт.ст. 90 % гемоглобина насыщается О2 и превращается в оксигемоглобин. Способность гемоглобина реагировать с О2 называется сродство. На это сродство влияет несколько факторов:

1. Эритроциты содержат 2,3дифосфоглицерат, его кол-во увеличивается при снижении напряжения, а при снижении напряжения О2 снижается.



3. РН крови. Чем больше РН тем сродство меньше.

4. Температура. Чем выше, тем сродство меньше.

Максимальное кол-во О2, которое может связать кровь при полном насыщении гемоглобина называется кислородной емкостью крови. 1 грамм гемоглобина связывает 1,34мм О2, поэтому кислородная емкость крови равна 19.

Транспорт СО2. СО2 в венозной крови составляет 55-58%. СО2 может переноситься в нескольких видах:

1. Соединение гемоглобина с СО2-называется карбгемоглобин, его 5%. А остальной СО2 транспортируется в виде кислых солей угольной кислоты. Угольная кислота образуется в клетках, она может переходить из тканей в кровь. Часть этого СО2 остается в физически растворенном состоянии, а большая часть претерпевает изменение. Эритроцитами переносится 2 соединения: карбгемоглобин и бикарбонат калия(KНСО3), а плазмой крови переносится бикарбонат натрия (NaHCO3).

Нервно-гуморальная регуляция дыхания. Дыхательный центр. Само регуляция. Регуляция дыхания – это приспособление дыхания к постоянно меняющимся потребностям организма в кислороде. Важно, чтобы деятельность дыхательной системы соответствовала точности с потребностями организма в кислороде для оптимальной регуляции дыхания необходимо соответствующее механизмы – это рефлекторные и гуморальные механизмы. Рефлекторные механизмы или нервные осуществляются дыхательным центром. Дыхательным центром называется совокупность специализированных нервных клеток, которые расположены в различных отделах ЦНС, которые обеспечивают координационное ритмичное дыхание. Еще в начале XIX века французский ученый Легалуа обнаружил в опятах на птицах, что при действии на продолговатый мозг изменяется дыхание. А в 1842 году ученый Плоуранс экспериментально доказал, также в опытах путем раздражения и разрушения участков продолговатого доказал, что дыхательный центр находится в продолговатом мозне. Было установлено, что перерезка мозга выше Воролевого моста не изменяет дыхание. А если сделать перерезку между Воролевым мостом и продолговатым мозгом, то изменяется глубина и частота дыхания, а если сделать ниже продолговатого мозга, то дыхание останавливается. Этими опытами было доказано, что есть первичный дыхательные центры, которые находятся в головном мозге:

1-ый дыхательный центр: продолговатый мозг – он отвечает за смену вдоха и выдоха. Этот опыт также доказал в 1859 году русский ученый Миславский, путем точечного раздражения. Он установил, что дыхательный центр располагается в продолговатом мозге на дне 4-го желудочка в области ретикулярной фармации. Этот дыхательный центр является парным состоит из правой и левой половины. Нейроны правого посылают импульсы в дыхательные мышцы правой половины, а левого участка к левой половине. Каждый из них состоит еще из 2-х отделов: центр вдоха и центр выдоха, т.е. центр инспирации и центр экспирации.

2-ой дыхательный центр находится в Воролевом мосту он называется пневмотоксический, он отвечает за глубину и частоту дыхания. Есть еще и вторичные центры, которые находятся в спинном мозге. К ним относятся 3-й центр шейный отдел спинного мозга, здесь находится центр диафрагмального нерва. 4-й в грудном отделе спинного мозга, здесь находится центр межреберных мышц. 5-й – гипоталамус. 6-й кора головного мозга – это на увиденное, на услышанное изменяется дыхание. Главным гуморальным регулятором дыхательного центра является избыток СО2. Роль СО2 как специфического раздражителя дыхательного центра был доказан ученым Фредериком в опыте на собаке с перекрестным кровообращением. Для этого Фредерик брал 2-х животных, соединял их единым кругом кровообращения, пережимал трахею у 1-ой собаки, у нее в крови появлялся избыток СО2 – это называется гиперкапния и недостаток О2 – гипоксия. Кровь 1-ой собаки с избытком СО2 омывало головной мозг 2-ой собаки, и у 2-ой собаки наблюдалась отдышка, а у 1-ой наоборот задержка дыхания. В 1911 году немецкий ученый Винтерштейн высказал мысль, что в возбудителях дыхательного центра является не сам СО2, а концентрация водорода с ионами, т.е. совмещение, изменение РН в кислую сторону. Но в дальнейшем его теория была отвергнута и было доказано, что раздражителем является избыток СО2.

Рефлексы Гейл Инга – Бреера. Эти рефлексы можно наблюдать при раздражении вагуса, наблюдают 3 вида рефлекса:

1. Инспираторно – тормозящий – прекращение вдоха

2. Экспираторно – облегчающий – при выдохе задерживается наступление следующего вдоха

3. Сильное разевание легких вызывает короткое сильное возбуждение инспираторных мышц, возникает судорожный вдох(вздох) – это называется парадоксальный эффект Хд. Значение рефлексов Гейл Инга – Бреера состоит в регулировании соотношения глубины и частоты дыхания в зависимости от состояния легких. Регуляция дыхания обеспечивает 2 группы процессов, которые обеспечивает наш организм:

1. Поддержание газового состава артериальной крови – гомеостатическая регуляция

2. Процесс, приспособления дыхания к изменяющимся условиям окружающей среды – поведенческая регуляция..

В венозной крови содержится около 580 мл / л С02. В крови он содержится в трех формах: связанный в виде угольной кислоты и ее солей, связанный с и в растворенном виде.
С02 образуется в тканях при окислительных процессах. В большинстве тканей Рсо2 составляет 50-60 мм рт. ст. (6,7-8 кПа). В крови, поступающей в артериальное конец капилляров, РаCO2 составляет около 40 мм рт. ст. (5,3 кПа). Наличие градиента заставляет С02 диффундировать из тканевой жидкости до капилляров. Чем активнее в тканях осуществляются процессы окисления, тем больше создается СОТ и тем больше Ртк.со2. Интенсивность окисления в различных тканях различна. В венозной крови, оттекающей от ткани, Pvco приближается к 50 мм рт. ст. (6,7 кПа). А в крови, оттекающей от почек, Pvco2 составляет около 43 мм рт. ст. Поэтому в смешанной венозной крови, поступающей в правого предсердия, в состоянии покоя Pvco2 равна 46 мм рт. ст. (6,1 кПа).
С02 растворяется в жидкостях активнее, чем 02. При РCO2 равный 40 мм рт. ст. (5,3 кПа), в 100 мл крови растворено 2,4-2,5 мл СОГ, что составляет примерно 5% от общего количества газа, который транспортируется кровью. Кровь, проходящая через легкие, отдает далеко не весь С02. Большая часть его остается в артериальной крови, поскольку соединения, которые образуются на основе С02, участвуют в поддержании кислотно-основного равновесия крови - одного из параметров гомеостаза.
Химически связанный С02 находится в крови в одной из трех форм:
1) угольная кислота (Н2С03):
2) бикарбонатный ион (НСОИ)
3) карбогемоглобин (ННЬС02).
В форме угольной кислоты переносится только 7% СОГ, бикарбонатных ионов - 70%, карбогемоглобин - 23%.
С02, который проникает в кровь, сначала подвергается гидратации с образованием угольной кислоты: С02 + Н20 Н2СОз.
Эта реакция в плазме крови происходит медленно. В эритроците, куда С02 проникает по градиенту концентрации, благодаря специальному ферменту - карбоангидразы - этот процесс ускоряется примерно в 10 000 раз. Поэтому эта реакция происходит в основном в эритроцитах. Создаваемая здесь угольная кислота быстро диссоциирует на Н + и НСО3-, чему способствует постоянное образование угольной кислоты: Н2С03 Н + + НСО3-.
При накоплении НСО3-в эритроцитах создается его градиент с плазмой. Возможность выхода НСО3-в плазму определяется условий: выход НСО3-должен сопровождаться одновременным выходом катиона или поступлением другого аниона. Мембрана эритроцита хорошо пропускает отрицательные, но плохо - положительные ионы. Чаще образования и выход НСО3-из эритроцитов сопровождается поступлением в клетку СИ "". Это перемещение называют хлоридным сдвигом.
В плазме крови НСО3-"взаимодействуя с катионами, создает соли угольной кислоты. В виде солей угольной кислоты транспортируется около 510 мл / л С02.
Кроме того, СОТ может связываться с белками: частично - с белками плазмы, но главным образом - с гемоглобином эритроцитов. При этом сог взаимодействует с белковой частью гемоглобина - глобина. Гем же остается свободным и сохраняет способность гемоглобина находиться одновременно в связи как с С02, так и 02. Таким образом, одна молекула НЬ может транспортировать оба газа.
В крови альвеолярных капилляров все процессы осуществляются в противоположном направлении. Главная из химических реакций - дегидратация - происходит в эритроцитах при участии той же карбоангидразы: Н + + НСО3 Н2С03 Н20 + С02.
Направление реакции определяется непрерывным выходом С02 с эритроцита в плазму, а из плазмы в альвеолы. В легких в связи с постоянным его выделением происходит реакция диссоциации карбогемоглобин:
ННЬС02 +02 ННЬ02 + С02-> НЬ02 + Н + + С02.
Взаимосвязь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации оксигемоглобина влияет на содержание С02 в крови. Эта зависимость связана с тем, что дезоксигемоглобином является слабой кислотой, чем оксигемоглобин, и может присоединять более Н + Вследствие этого при уменьшении содержания оксигемоглобина повышается степень диссоциации Н2СОз, а следовательно, увеличивается транспорт С02 кровью. Эта зависимость называется эффектом Холдейна.
Взаимосвязь обмена двуокиси углерода и кислорода ярко обнаруживается в тканях и легких. К тканям поступает оксигенированный кровь. Здесь под влиянием С02 усиливается диссоциация гемоглобина. Поэтому поступление кислорода в ткани способствует ускорению поглощения С02 кровью.
В легких происходят обратные процессы. Поступление 02 снижает сродство крови к С02 и облегчает диффузию С02 в альвеолы. Это, в свою очередь, активизирует ассоциации гемоглобина с кислородом.

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Двуокись углерода – конечный продукт окислительных обменных процессов в клетках – переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО 2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО 2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО 2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.

Напряжение СО 2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО 2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО 2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО 2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО 2 с образованием угольной кислоты.

В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО 2 , участвующие в реакции гидратации, должны сначала поступить в эритроциты.

Следующая реакция в цепи химических превращений СО 2 заключается в диссоциации слабой кислоты Н 2 СО 3 на ионы бикарбоната и водорода.

Накопление НСО 3 - в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО 3 - могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО 3 - должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО 3 - в эритроцит поступают ионы Сl - . Этот обменный процесс называется хлоридным сдвигом.

СО 2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминова связь.

Гемоглобин, связанный с СО 2 , называется карбогемоглобином.

Зависимость содержания СО 2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.

Красный пигмент гемоглобин (Нb) состоит из белковой части (глобина) и собственно пигмента (гема). Молекулы составляют четыре белковые субъединицы, каждая из которых присоединяет гем-группу с двухвалентным атомом железа, находящимся в ее центре. В легких каждый атом железа присоединяет одну молекулу кислорода. Кислород переносится в ткани, где он отделяется. Присоединение О 2 называется оксигенацией (насыщением кислородом), а его отсоединение - дезоксигенацией.

Транспорт СО 2

Около 10% углекислого газа (СО 2), конечного продукта окислительного метаболизма в клетках тканей, переносится кровью физически растворенным п 90% — в химически связанной форме. Большая часть углекислого газа сначала диффундирует из клеток тканей в плазму, а оттуда в эритроциты. Там молекулы СО 2 химически связываются и превращаются с помощью ферментов в намного более растворимые бикарбонат-ионы (НСО 3 -), которые переносятся в плазме крови. Образование СO 2 из НСО 3 - значительно ускоряется с помощью фермента карбоангидразы, присутствующего в эритроцитах.

Большая часть (около 50-60%) образованных бикарбонат-ионов поступает из эритроцитов обратно в плазму в обмен на хлорид-ионы. Они переносятся в легкие и выделяются в процессе выдоха после превращения в СO 2 . Оба процесса — образование НСО 3 - и освобождение СO 2 , соответственно связаны с оксигенацией и дезоксигенацией гемоглобина. Дезоксигемоглобин — заметно более сильное основание, чем оксигемоглобин, и может присоединить больше ионов Н + (буферная функция гемоглобина), таким образом способствуя образованию НСО 3 - в капиллярах тканей. В капиллярах легких НСО 3 - опять проходит из плазмы крови в эритроциты, соединяется с Н + -ионами и превращается опять в СO 2 . Этот процесс подтверждается тем фактом, что окисленная кровь выделяет больше протонов Н + . Намного меньшая доля СО 2 (около 5-10%) связана непосредственно с гемоглобином и переносится как карбаминогемоглобин.

Гемоглобин и угарный газ

Оксид углерода (угарный газ, СО) является бесцветным газом без запаха, который образуется во время неполного сгорания и, как кислород, может обратимо связываться с гемоглобином. Однако сродство угарного газа к гемоглобину заметно больше, чем у кислорода. Таким образом, даже когда содержание СО во вдыхаемом воздухе составляет 0,3%, 80% гемоглобина связывается с угарным газом (НbСО). Так как угарный газ в 200-300 раз медленней, чем кислород, освобождается от связи с гемоглобином, его токсическое действие определяется тем, что гемоглобин больше не может переносить кислород. У тяжелых курильщиков, например, 5-10% гемоглобина присутствует как НbСО, в то время как при его содержании в 20% появляются симптомы острого отравления (головная боль, головокружение, тошнота), а 65% могут быть смертельным.

Часто для оценки гемопоэза или для распознавания различных форм анемии определяют среднее содержание гемоглобина в эритроците (СГЭ). Оно вычисляется по формуле:

Значение среднего содержания гемоглобина в эритроците лежит между 38 и 36 пикограммами (пг) (1 пг = 10ˉ¹² г). Эритроциты с нормальным СГЭ называются нормохромными (ортохромными). Если СГЭ низкое (например, из-за постоянной потери крови или дефицита железа), эритроциты называются гипохромными; если СГЭ высокое (например, при пернициозной анемии благодаря дефициту витамина В 12), они называются гиперхромными.

Формы анемии

Анемия определяется как дефицит (снижение количества) эритроцитов или сниженное содержание гемоглобина в крови. Диагноз анемии обычно ставится по содержанию гемоглобина, нижняя граница нормы достигает 140 г/л у мужчин и 120 г/л у женщин. Почти при всех формах анемии надежным симптомом заболевания является бледный цвет кожи и слизистых оболочек. Часто во время физических нагрузок заметно увеличивается сердечный ритм (увеличивая скорость кровообращения), а уменьшение кислорода в тканях приводит к одышке. Кроме того, встречается головокружение и легкая утомляемость.

Кроме железодефицитной анемии и хронической потери крови, например, из-за кровоточащих язв или опухолей в желудочно-кишечном тракте (гипохромные анемии), анемия может возникать при дефиците витамина В 12 . фолиевой кислоты или эритропоэтина. Витамин В 12 и фолиевая кислота участвуют в синтезе ДНК в незрелых клетках костного мозга и, таким образом, заметно влияют на деление и созревание эритроцитов (эритропоэз). При их нехватке образуется меньше эритроцитов, но они заметно увеличены из-за повышенного содержания гемоглобина (макроциты (мегалоциты), предшественники: мегалобласты), поэтому содержание гемоглобина в крови практически не изменяется (гиперхромная, мегалобластическая, макроцитарная анемия).

Дефицит витамина В 12 нередко возникает из-за нарушения всасывания витамина в кишечнике, реже — вследствие недостаточного приема с пищей. Эта так называемая пернициозная анемия наиболее часто является результатом хронического воспаления в слизистой кишечника с уменьшением образования желудочного сока.

Витамин В 12 всасывается в кишечнике только в связанном виде с фактором, находящимся в желудочном соке «внутренним фактором (Кастла)», который защищает его от разрушения пищеварительным соком в желудке. Так как печень может запасать большое количество витамина В 12 , то перед тем, как ухудшение всасывания в кишечнике повлияет на образование эритроцитов, может пройти 2-5 лет. Как и в случае дефицита витамина В 12 , дефицит фолиевой кислоты, другого витамина группы В, приводит к нарушению эритропоэза в костном мозге.

Есть две другие причины анемии. Одна из них — разрушение костного мозга (аплазия костного мозга) радиоактивным излучением (например, после аварии на атомной электростанции) или в результате токсичных реакций на лекарства (например, цитостатики) (апластическая анемия). Другая причина — это уменьшение продолжительности жизни эритроцитов в результате их разрушения или увеличенного распада (гемолитическая анемия). При сильной форме гемолитической анемии (например, следующей за неудачным переливанием крови), кроме бледности может наблюдаться изменение цвета кожи и слизистых оболочек на желтоватый. Эта желтуха (гемолитическая желтуха) вызвана увеличивающимся разрушением гемоглобина до билирубина (желтого желчного пигмента) в печени. Последнее приводит к увеличению уровня билирубина в плазме и его отложению в тканях.

Примером анемии, возникающей в результате наследственного нарушения синтеза гемоглобина, клинически проявляющейся как гемолитическая, служит серповидноклеточная анемия. При этой болезни, которая практически встречается только у представителей негроидных популяций, имеется молекулярное нарушение, приводящее к замене нормального гемоглобина на другую форму гемоглобина (HbS). В HbS аминокислота валин заменена на глутаминовую кислоту. Эритроцит, содержащий такой неправильный гемоглобин, в дезоксигенированном состоянии принимает форму серпа. Серповидные эритроциты более жесткие и плохо проходят через капилляры.

Наследственное нарушение у гомозигот (доля HbS в суммарном гемоглобине 70-99%) приводит к закупорке небольших сосудов и, таким образом, к постоянному повреждению органов. Пораженные этой болезнью люди обычно достигают зрелости только при интенсивном лечении (например, частичной замене крови, приеме анальгетиков, избегании гипоксии (кислородного голодания) и иногда — пересадке костного мозга). В некоторых регионах тропической Африки с высоким процентом малярии 40% популяции являются гетерозиготными носителями данного гена (когда содержание HbS менее 50%), у них таких симптомов не обнаруживается. Измененный ген обусловливает устойчивость к малярийной инфекции (селективное преимущество).

Регуляция образования эритроцитов

Образование эритроцитов регулируется гормоном почек эритропоэтином. Организм обладает простой, но очень эффективной системой регуляции для поддержания содержания кислорода и вместе с тем количества эритроцитов относительно постоянным. Если содержание кислорода в крови падает ниже определенного уровня, например, после большой потери крови или во время пребывания на больших высотах, постоянно стимулируется образование эритропоэтина. В результате усиливается образование эритроцитов в костном мозге, что увеличивает способность крови к переносу кислорода. Когда дефицит кислорода преодолевается увеличением числа эритроцитов, образование эритропоэтина опять уменьшается. Пациенты, нуждающиеся в диализе (искусственном очищении крови от продуктов обмена веществ), с нарушением функционирования почек (например, с хронической почечной недостаточностью) часто испытывают явный дефицит эритропоэтина и поэтому почти всегда страдают от сопутствующей анемии.



Loading...Loading...