Сплавы на основе железа. Использование их в интерьере. Сплавы Железо и его сплавы

Элемент VIII группы Периодической системы Д. И. Менделеева. Оно сходно с никелем и кобальтом, внешние орбитали атомов этих элементов отличаются только добавлением одного d -электрона - 3d 6 s 2 (Fe), 3d 7 s 2 (Ni), 3d 8 s 2 (Co).

Было известно человечеству по крайней мере шесть тысячелетий до н. э., сначала в виде метеоритов, обычно содержащих 90% Fe; 8,5% Ni и 0,5% Со. В земной коре запасы этих металлов приблизительно соответствуют отношению 2 10 3 ; 2 10 2:1

Научились выплавлять из руд не позднее 15 столетий до н. э., в 1500 г. мировое производство его достигло 50 тыс. т, в настоящее время оно близко к 500 млн. т.

Чистое железо - серебристо-белый вязкий и ковкий металл, при плавлении он увеличивается в объеме на 4,4%.

В 1868 г. Д. К. Чернов открыл аллотропию железа, определил температуры превращений, назвал их критическими точками (рис ., а) и установил, что режим горячей обработки и условия последующего охлаждения определяют строение и свойства сплавов железа. Значение работ Д. К. Чернова трудно переоценить. В 1900 г. при открытии Всемирной промышленной выставки в Париже Поль Монгольфье заявил: «Считаю своим долгом открыто и публично заявить в присутствии стольких знатоков и специалистов, что наши заводы и все сталеплавильное дело обязаны настоящим своим развитием и успехом в значительной мере труду и исследованиям русского инженера Чернова».

Рис . Система железо-углерод:

а - критические точки железа; б - диаграмма состояния

Модификация твердого железа α, β и δ различаются температурными интервалами стабильного существования, α- и β-железо имеют пространственную решетку центрированного куба, а γ-железо - решетку куба с центрированными гранями. Ниже температуры 768° С железо обладает ферромагнитными свойствами. Выше этой температуры оно теряет их. Поэтому модификации а и.р различаются только магнитностью.

С углеродом железо образует карбид (цементит) Fе3С. От крытие Черновым критических точек легло в основу диаграммы

состояния железо - (рис .,б), характеризующей фазовые и структурные превращения в железоуглеродистых сплавах с изменением температуры. Сплав с содержанием 6,66% С представляет собой карбид железа Fe 3 C. Точка Е на диаграмме соответствует предельной растворимости углерода в твердом железе. железа с содержанием углерода до 2% называют сталью, свыше 2% -чугуном. Содержание углерода в значительной мере определяет свойства стали. С увели чением углерода повышается твердость и прочность стали с одновременным понижением пластичности.

На свойства стали существенно влияют и другие, часто входящие в ее состав элементы: , кремнии, и т. д. Так, содержащийся в любой стали от 0,2 до 1,0% и свыше 1 % в марганцовистых сталях, повышает способность стали закаливаться, увеличивает ее твердость, прочность, предел текучести, понижает пластические свойства - относительное сжатие, удлинение и вязкость. содержится в распространенных марках стали в количестве не более 0,4%, а в кремнистых сталях - свыше 0,5%. повышает способность стали к закалке и увеличивает ее предел прочности.

Некоторые другие являются специальными присадка ми. Их вводят в сталь для придания ей особых свойств. Сталь, содержащая присадки, называется легированной.

Вредными примесями в стали являются , растворенные газы. вызывает хрупкость стали в горячем состоянии (красноломкость), неоднородность слитка по составу, ухудшает механические и пластические свойства. Поэтому содержание серы должно быть не более 0,02-0,05%.

Повышает хрупкость стали в холодном состоянии (хладноломкость) и понижает ударную вязкость. Максимальное содержание фосфора не должно превышать 0,02-0,03%.

По назначению сталь делится на три основных класса: конструкционная (рессорная, котельная, шарикоподшипниковая, и др.), применяемая в машиностроении; инструментальная, применяемая для изготовления инструмента; сталь с особыми свойствами- нержавеющая, кислотоупорная, жароупорная, жаропрочная, сталь с особыми магнитными свойствами и т. д.

Железо по содержанию в земной коре занимает четвертое место (4,7%). Распространенность железа, высокая концентрация в крупных месторождениях, разнообразные высокие физико-технические свойства сплавов железа сделали его самым широко применяемым металлом. Чугун тверд, хрупок и трудно поддается обработке. Поэтому он не всегда может быть применен непосредственно, а служит черновым металлом для получения стали разнообразных марок и производства чугунного литья. Таким образом, современное производство стали осуществляется в две стадии: получение чернового металла - чугуна и его рафинирование для превращения в сталь.

Статья на тему железа

Сплавы железа распространены в промышленности наиболее широко. Основные из них - сталь и чугун - представляют собой сплавы железа с углеродом. Для получения заданных свойств в сталь и чугун вводят легирующие элементы. Ниже рассмотрено строение и фазовые превращения в сплавах железо-углерод, а также фазы в сплавах железа с легирующими элементами.

1. КОМПОНЕНТЫ И ФАЗЫ В СИСТЕМЕ ЖЕЛЕЗО - УГЛЕРОД

Железо - металл сероватого цвета. Атомный номер 26, атомная масса 55,85, атомный радиус 0,127 нм. Чистое железо, которое может быть получено в настоящее время, содержит технические сорта Температура плавления железа 1539 °С. Железо имеет две полиморфные модификации и Модификация -железа существует при температурах ниже 910 °С и выше (рис. 82). В интервале температур 1392-1539 °С a-железо нередко обозначают как -железо.

Кристаллическая решетка а-железа - объемно центрированный куб с периодом решетки 0,28606 нм. До температуры -железо магнитно (ферромагнитно). Температуру соответствующую магнитному превращению, т. е. переходу из ферромагнитного состояния в парамагнитное, называют точкой Кюри и обозначают

Плотность а-железа .

Рис. 82. Кривая охлаждения чистого железа (а) и схема микроструктуры феррита и аустенита -железо существует при температуре 910- 1392 °С; оно парамагнитно.

Кристаллическая решетка -железа гранецентрированная кубическая нм при

Критическую точку превращения ауфис. 82) при обозначают соответственно (при нагреве) и (при охлаждении). Критическую точку перехода при обозначают (при нагреве) и (при охлаждении).

Углерод является неметаллическим элементом II периода IV группы периодической системы, атомный номер 6, плотность температура плавления атомный радиус 0,077 нм. Углерод полиморфен. В обычных условиях он находится в виде модификации графита, но может существовать и в виде метаста-бильной модификации алмаза.

Углерод растворим в железе в жидком и твердом состояниях, а также может быть в виде химического соединения - цементита, а в вшсокоуглеродистых сплавах и в виде графита.

В системе различают следующие фазы: жидкий сплав, твердые растворы-феррит и аустенит, а также цементит и графит.

Феррит - твердый раствор углерода и других примесей в -железе. Различают низкотемпературный -феррит с растворимостью углерода до и высокотемпературный -феррит в

предельной растворимостью углерода Атом углерода располагается в решетке феррита в центре грани куба, где помещается сфера радиусом 0,29 атомного радиуса железа, а также в вакансиях, на дислокациях и т. д. Под микроскопом феррит выявляется в виде однородных полиэдрических зерен .

Феррит (при 0,06 % С) . имеет примерно следующие механические свойства:

Аустенит - твердый раствор урлерода и других примесей в Атом углерода в решетке -железа располагается в центре элементарной ячейки (см. рис. 29, б), в которой может поместиться сфера радиусом атомный радиус железа) и в дефектных областях кристалла.

Различные объемы элементарных сфер в ОЦК и ГЦК решетках и предопределили значительно большую растворимость углерода в -железе по сравнению с растворимостью в -железе. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Микроструктура аустенита - полиэдрические зерна (рис. 82, в).

Железо обладает следующими свойствами:

более высокое по сравнению с медью и алюминием удельное элек­трическое сопротивление ( примерно 0,1 мкОм×м), что ограничива­ет возможности применения железа как проводникового материала;

высокий температурный коэффициент удельного электрическо­го сопротивления ТКр;

высокая механическая прочность;

дешевизна и доступность материала;

большая магнитная проницаемость и высокая индукция насы­щения;

технологичность (хорошо штампуется и обрабатывается на всех металлорежущих станках).

При переменном токе в стали как в ферромагнитном материале заметно ска­зывается поверхностный эффект, почему в соответствии с известными законами электротехники активное сопротивление стальных проводников переменному току выше, чем постоянному току. Кроме то­го, при переменном токе в стальных про­водниках появляются потери мощности на гистерезис.

Применение железа

Железо используют при разработке нагревостойких сплавов и сплавов с высоким сопротивлением, в которые железо входит как необходимая составная часть. Его применяют также в электрова­куумных приборах как материал для анодов, экранов и других эле­ментов, работающих при температурах до 500 °С. Как ферромаг­нитный материал железо является основным и наиболее дешевым компонентом магнитных материалов. Вследствие низкого удельного электрического сопротивления железо используют при изготовле­нии изделий, предназначенных для работы только в постоянных магнитных полях.

Стали

Железоуглеродистые сплавы с содержанием углерода до 0,05% принято называть техническим железом, с содержанием уг­лерода 0,05... 1,35% - сталями, а с содержанием углерода свыше 2% - чугунами. Кроме углерода железоуглеродистые сплавы всегда содержат примеси кремния, марганца, серы и фосфора.

Углерод определяет структуру и свойства стали. С увеличением содержания углерода повышается твердость и снижается вязкость, тепло- и электропроводность.

В углеродистой стали кроме основной примеси - углерода все­гда присутствуют постоянные примеси: кремний Si (0,1 ...0,37%); марганец Мп (0,2...0,8%); сера S (0,03...0,06%); фосфор Р (0,03... ...0,07%).

Кремний способствует устранению пузырей в слитке, повышает сопротивление разрыву и упругие свойства стали, а также повыша­ет твердость.

Марганец повышает твердость стали и сопротивление разрыву, уменьшает удлинение и ухудшает свариваемость стали.

Сера является вредной примесью. Присутствие серы в количе­стве выше допустимого ухудшает прочность, пластичность и кор­розионную стойкость, повышает истираемость и изнашиваемость изделий. Фосфор также является вредной примесью. Его повышен­ное содержание вызывает в стали хрупкость при обычных темпера­турах и появление трещин при ударной деформации, ухудшает ме­ханические свойства за счет образования крупнозернистой струк­туры.

Кислород в стали содержится обычно в тысячных долях процен­та. При повышении содержания кислорода увеличивается хрупкость стали.

По назначению углеродистую сталь разделяют на конструкци­онную и инструментальную. Конструкционные стали применяют для изготовления деталей машин и механизмов. Для изготовления корпусов полупроводниковых приборов используют низкоуглеродистую сталь в виде лент толщиной от 0,05 до 2,5 мм и шириной до 400 мм.

В обозначениях низкоуглеродистых сталей после слова “Сталь” ставят цифру, обозначающую содержание углерода. Например, Сталь 10 (содержание углерода 0,1%).

Стали, содержащие в своем составе специальные примеси, назы­ваются легированными. Присутствие таких легирующих элементов, как хром (X), молибден (М), вольфрам (В), ванадий (Ф), титан (Т), никель (Н), повышает твердость и прочность сталей при значитель­ной пластичности и вязкости, повышает коррозионную стойкость, жароупорность, кислотостойкость и целый ряд других свойств.

Натрий

Натрий относится к перспективным проводниковым матери­алам, обладающим следующими свойствами:

удельное электрическое сопротивление натрия в 2,8 раза боль­ше, чем у меди, и в 1,7 раз больше, чем у алюминия;

низкая плотность (он легче воды, плотность его в 9 раз меньше плотности меди), поэтому провода из натрия при данной проводи­мости на единицу длины при нормальной температуре значитель­но легче, чем провода из любого другого металла;

химически активен (он интенсивно окисляется на воздухе и бур­но реагирует с водой);

малый предел прочности при растяжении и других деформа­циях.

Натриевые провода герметизируют в пластмассовые (полиэти­леновые) оболочки, что повышает их механическую прочность и создает электрическую изоляцию.

Биметалл

В ряде случаев для уменьшения расхода цветных металлов в проводниковых конструкциях выгодно применять так называемый проводниковый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно по всей поверхности их соприкосновения.

Для изготовления биметалла применяют два способа: горячий (стальную болванку ставят в форму, а промежуток между болван­кой и стенками формы заливают расплавленной медью; полученную после охлаждения биметаллическую болванку подвергают прокатке и протяжке) и холодный, или электролитический (медь осаждают электролитически на стальную проволоку, пропускаемую через ванну с раствором медного купороса). Холодный способ обеспечи­вает большую равномерность толщины медного покрытия, но требует значительного расхода электроэнергии; кроме того, при холод­ном способе не обеспечивается столь прочное сцепление слоя меди со сталью, как при горячем способе.

Биметалл имеет механические и электрические свойства, проме­жуточные между свойствами сплошного медного и сплошного сталь­ного проводника того же сечения: прочность биметалла больше, чем меди, но электрическая проводимость меньше. Расположение меди в наружном слое, а стали внутри конструкции, а не наоборот весьма важно: с одной стороны, при переменном токе достигается более высокая проводимость всего провода в целом, с другой - медь защищает расположенную под ней сталь от коррозии (из тех же соображений применяется и рас­положение стали внутри конструкции в сталеалюминиевых проводах).

Такую проволоку применяют для линий связи, линий электропередачи и т. п. Из проводникового биметалла изготовляются шины для распределительных устройств, полосы для рубильников и различные токопроводящие части электрических аппаратов.

СВЕРХПРОВОДНИКИ И КРИОПРОВОДНИКИ

Сверхпроводники. При понижении темпе­ратуры удельное сопротивление r металлических проводников уменьшается. Исключительный интерес представляет вопрос об электропроводности металлов при весьма низких (криогенных) температурах, приближающихся к абсолютному нулю.

В 1911 г. нидерландский физик X. Камерлинг-Оннес исследовал электропроводность металлов при «гелиевых» температурах (температура сжижения гелия при нормальном давлении около 4,2 К; еще более низкие температуры могут быть получены при испарении жидкого гелия). При этом Ка­мерлинг-Оннес сделал поразительное открытие: он обнаружил, что при охлаждении до температуры, примерно равной температуре сжи­жения гелия, сопротивление кольца из замороженной ртути вне­запно, резким скачком падает до чрезвычайно малого, не подда­ющегося измерению, значения.

Такое явление, т. е. наличие у вещества практически бесконечной удельной проводимости, было названо сверхпроводимостью , тем­пература , при охлаждении до которой вещество переходит в сверхпроводящее состояние, - температурой сверхпроводящего пе­рехода , а вещества, переходящие в сверхпроводящие состояние, - сверхпроводниками .

Переход в сверхпроводящее состояние является обратимым; при повышении температуры до значения Тс сверхпроводимость наруша­ется и вещество переходит в нормальное состояние с конечным зна­чением удельной проводимости g .

В настоящее время известно уже 35 сверхпроводниковых металлов и более тысячи сверхпроводниковых сплавов и химических соеди­нений различных элементов. В то же время многие вещества, в том числе и такие, обладающие весьма малыми значениями r при нормальной температуре металлы, как серебро, медь, золото, платина и другие, при наиболее низких достигнутых в настоящее время температурах (около милликельвина) перевести в сверхпроводящее состояние не удалось.

Явление сверхпроводимости связано с тем, что электрический ток, однажды наведенный в сверхпроводящем контуре, будет дли­тельно (годами) циркулировать по этому контуру без заметного уменьшения своей силы, и притом без всякого подвода энергии извне (конечно, если не учитывать неизбежного расхода энергии на работу охлаждающего устройства, которое должно поддерживать температуру сверхпроводящего контура ниже значения Тс , харак­терного для данного сверхпроводникового материала).

Такой сверхпроводящий контур создает в окружающем пространстве магнитное поле, подобно постоянному магниту. Поэтому обтекаемый электри­ческим током сверхпроводящий соленоид должен представлять собой сверхпроводниковый электромагнит, не требующий питания от ис­точника тока. Однако первоначальные попытки изготовить практи­чески пригодный сверхпроводниковый электромагнит, создающий в окружающем пространстве магнитное поле с достаточно высокими напряженностью Н и магнитной индукцией В , закончились неуда­чей. Оказалось, что сверхпроводимость нарушается не только при повышении температуры до значений, превышающих Тс , но и при возникновении на поверхности сверхпроводника магнитного поля с магнитной индукцией, превышающей индукцию перехода .

Рис. 1. Общий вид диаграммы состояния сверхпроводника первого рода

Это поясняется диаграммой состояния сверх­проводника, изображенной на рис.1. Каждому значению тем­пературы Т данного материала, находящегося в сверхпроводящем состоянии, соответствует свое значение индукции перехода Вс . Наибольшая возможная температура перехода Т с0 (критическая температура) данного сверхпроводникового материала достигается при ничтожно малой магнитной индукции, т. е. для сверхпроводникового электромагнита -при весьма малой силе тока, идущего через обмотку этого электромагнита. Соответственно и наибольшее возможное значение В с0 магнитной индукции перехода (критическая магнитная индукция) соответствует температуре сверхпроводника, ничтожно отличающейся от нуля Кельвина. Заштрихованная об­ласть OPQ на рис. 1 соответствует сверхпроводящему состоянию, а незаштрихованная область вне кривой PQ - нормальному состоя­нию материала. Если материал работает при температуре и магнит­ной индукции, соответствующих точке X на диаграмме состояния, то сверхпроводимость мо­жет быть нарушена нагре­вом (переход через кривую PQ в точке Y), повышением магнитной индукции (пере­ход через кривую PQ в точке Z), а также в общем случае и одновременным изменением как Т , так и В , что переводит материал в нормальное состояние (кривая PQ пересекается в любой ее точке).

Рис. 2. Диаграммы состояния элементарных сверхпроводников первого рода для наиболее известных элементов

Рис. 3. Магнитное поле с введенным в него сверхпроводником

В 1933 г. немецкие физики В.Майснер и Р.Оксенфельд обнару­жили, что сверхпроводники при переходе в сверхпроводящее со­стояние становятся идеальными диамагнентиками, т.е. их магнит­ная проницаемость m скачком падает от m = 1 до m = 0. Поэтому внешнее магнитное поле не проникает в сверхпроводящее тело. Если переход материала в сверхпроводящее состояние происходит в маг­нитном поле, то поле «выталкивается» из сверхпроводника (рис. 3.).

Известные сверхпроводники имеют весьма низкие критические температуры перехода Тс . Поэтому устройства, в которых используются сверхпроводники, должны работать в условиях охлаждения жидким гелием (температура сжижения гелия при нормальном дав­лении примерно 4,2 К). Это усложняет и удорожает производство и эксплуатацию сверхпроводниковых материалов.

Кроме ртути сверхпроводимость присуща и другим чистым ме­таллам (химическим элементам) и различным сплавам и химичес­ким соединениям. Однако такие металлы, как серебро и медь, при самых низких температурах, достигнутых в настоящее время, пере­вести в сверхпроводящее состояние не удалось.

Сверхпроводниковые материалы подразделяют на мягкие и твердые .

К мягким сверхпроводникам относят чистые металлы, за исклю­чением ниобия, ванадия, теллура.

Основным недостатком мягких сверхпроводников является низ­кое значение критической индукции магнитного поля В с0 . Сверхпроводящее состояние в этих материалах исчезает уже в слабых магнитных полях при небольших плот­ностях тока.

К твердым сверхпроводникам отно­сят сплавы с искаженными кристалличес­кими решетками. Они сохраняют сверх­проводимость даже при относительно больших плотностях тока и сильных маг­нитных полях. Свойства твердых сверх­проводников были открыты в середине нашего столетия и до настоящего време­ни проблема их исследования и приме­нения является одной из важнейших про­блем современной науки и техники.

Твердые сверхпроводники обладают рядом особенностей:

при охлаждении переход в сверхпроводящее состояние проис­ходит не резко, как у мягких сверхпроводников, а на протяжении некоторого температурного интервала;

некоторые из твердых сверхпроводников имеют не только срав­нительно высокие значения критической температуры перехода Т с , но и относительно высокие значения критической магнитной ин­дукции В с0 ;

при изменении магнитной индукции могут наблюдаться проме­жуточные состояния между сверхпроводящим и нормальным;

имеют тенденцию к рассеянию энергии при пропускании через них переменного тока;

зависимость свойств сверхпроводимости от технологических режимов изготовления, чистоты материала и совершенства его кри­сталлической структуры.

По технологическим свойствам твердые сверхпроводники делят на следующие виды:

1) сравнительно легко деформируемые, из которых можно изготав­ливать проволоку и ленты [ниобий, сплавы ниобий-титан (Nb-Ti), ванадий-галлий (V-Ga)];

2) трудно поддающиеся деформации из-за хрупкости, из которых получают изделия методами порошковой металлургии (интерметал­лические материалы типа станнида ниобия Nb,Sn).

Часто сверхпроводниковые провода покрывают «стабилизиру­ющей» оболочкой из меди или другого хорошо проводящего элек­трический ток и тепло металла, что дает возможность избежать повреждения основного материала сверхпроводника при случай­ном повышении температуры. В ряде случаев применяют компо­зитные сверхпроводниковые провода, в которых большое число тонких нитевидных сверхпроводников заключено в массивную обо­лочку из меди или другого несверхпроводникового материала.

Сверхпроводники используют при создании: электрических ма­шин и трансформаторов малых массы и размеров с высоким коэф­фициентом полезного действия; кабельных линий для передачи энер­гии большой мощности на большие расстояния; волноводов с осо­бо малым затуханием; накопителей энергии и устройств памяти; магнитных линз электронных микроскопов; катушек индуктивнос­ти с печатным монтажом. На основе пленочных сверхпроводников создан ряд запоминающих устройств и элементов автоматики и вычислительной техники. Обмотки электромагнитов из сверхпро­водников позволяют получать максимально возможные значения напряженности магнитного поля.

Свойства некоторых сверхпроводниковых материалов приведе­ны в табл. 3.9.

Криопроводники. Помимо явления сверхпроводимости, в совре­менной электротехнике все шире используется явление криопроводимости (прежнее название - гиперпроводимость.), т. е. достижение металлами весьма малого значения удельного сопротивления при криогенных температурах (но без перехода в сверхпроводящее состояние). Металлы, обладающее таким свойством, называются криопроводниками.

Физически явление криопроводимости не сходно с явлением сверхпроводимости.

Плотность тока в криопроводниках при рабочих температурах в тысячи раз превышает плотность тока в них при нормальной тем­пературе, что определяет их использование в сильноточных элект­ротехнических устройствах, к которым предъявляются высокие тре­бования по надежности и взрывобезопасности.

Применение криопроводников в электрических машинах, кабелях и т.п. имеет существенное преимущество по сравнению со сверх­проводниками. Если в сверхпроводниковых устройствах в качестве охлаждающего агента применяют жидкий гелий, работа криопроводников обеспечивается благодаря более высококипящим и дешевым хладагентам - жидкому водороду или даже жидкому азоту. Это упро­щает и удешевляет производство и эксплуатацию устройства. Одна­ко необходимо учитывать технические трудности, которые возника­ют при использовании жидкого водорода, образующего при опреде­ленном соотношении компонентов взрывоопасную смесь с воздухом.

В качестве криопроводников используют медь, алюминий, се­ребро, золото.

Сплавы - это материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов, из которых хотя бы один является металлом. Самый распространенный способ получения сплавов - затвердевание однородной смеси их расплавленных компонентов. Почти все металлы, имеющие промышленное значение, используются в виде сплавов. Так, например, все выплавляемое железо почти целиком идет на изготовление обычных и легированных сталей, а также чугунов.

Сплавы на основе железа

Сталь. Сплавы железа с углеродом, содержащие его до 2%, называются сталями. В состав легированных сталей входят и другие элементы - хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно было бы перечислить. Малоуглеродистая сталь (менее 0,25% углерода) в больших количествах потребляется в качестве конструкционного материала. Сталям свойственны также хорошие технологические свойства. К тому же они сравнительно недороги.

Благодаря этим достоинствам стали - основной конструкционный материал промышленности. Разработано около 2000 марок сталей и сплавов на основе железа.

Чугун. Чугуном называется сплав железа с содержанием углерода 2-4%. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей. В правильно выполненных отливках достигаются хорошие механические свойства материала.

Возрастающие требования техники к металлическим материалам, прежде всего в отношении их механических свойств, коррозионной стойкости в различных агрессивных средах привели к созданию новых сплавов железа, содержащих Cr, Ni, Si, Mo, W и др.

Кроме того, для введения в сталь легирующих элементов применяются особые сплавы железа, получившие название ферросплавов.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Элементы, специально вводимые в сталь для изменения ее свойств, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной. К важнейшим легирующим элементам относятся Cr, Ni, Mn, W, Мо. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий никель, хром и другие).

В настоящее время создано большое число нержавеющих сталей путем присадок к железу никеля, хрома, кобальта и др. Такие стали не покрываются ржавчиной, но их поверхностная коррозия имеет место, хотя и с малой скоростью. Оказалось, что при использовании легирующих добавок коррозионная стойкость меняется скачкообразно.

Установлено правило, названное правилом Таммана, согласно которому резкое повышение устойчивости к коррозии железа наблюдается при введении легирующей добавки в количестве 1/8 атомной доли, т.е. один атом легирующей добавки приходится на восемь атомов железа. Считается, что при таком соотношении атомов происходит их упорядоченное расположение в кристаллической решетке твердого раствора, что и затрудняет коррозию.

Легированной считают сталь, в которой содержание определенных химических элементов не менее: 0,0001% бора; 0,1% титана, циркония, ниобия, ванадия и молибдена и 1,0% других легирующих элементов.

В низколегированных сталях суммарное содержание легирующих элементов - до 5%, в среднелегированных - 5-10% и высоколегированных - более 10%.

Чем выше легированность стали, тем больше ее стоимость. Наиболее дорогими являются стали с такими легирующими элементами, как Ni, Mo, W, Со.

Низколегированные стали наиболее широко применяются в строительстве. В машиностроении используют средне- и высоколегированные стали. В этих сталях обычно содержится 0,8-1,8% Мп; 0,4-1,2% Si; 0,8-1,0% Cr; 1,0-4,5% Ni; 0,15-0,4% Mo; 0,5-1,2% W; 0,06-0,3% V; 0,03-0,09% Ti; 0,002-0,005% B.

Рассмотрим особенности и область применения различных легированных сталей.

  • 1. Жароустойчивые стали - легируют хромом, кремнием, алюминием и никелем, которые при высоких температурах образуют плотные оксидные пленки. Сталь, содержащую 1% кремния и 15% хрома, можно эксплуатировать при температуре 800°С. Такие стали применяют при производстве газовых турбин, клапанов моторов, реактивных двигателей.
  • 2. Нержавеющие стали - должны содержать до 12% хрома и не более 0,23% углерода, что позволяет им быть устойчивыми против коррозии в щелочных, кислотных условиях и при высокой минерализации. Используют при изготовлении конструкций, эксплуатируемых в морской воде, например, арматура для опор Крымского моста.
  • 3. Износоустойчивые стали - содержат до 1,3% углерода и 14% марганца, обладают большой способностью к упрочнению. Из такой стали изготавливают технику для строительства, ковши экскаваторов, стрелки на железнодорожных путях.
  • 4. Конструкционные стали - это прежде всего хромированные и никелированные. Содержание хрома до 1,5% позволяет повысить прочность и твердость стали, а значит, расширить ее эксплуатационные характеристики при возведении высотных и большепролетных зданий. Введение до 5% никеля позволяет повысить коррозионную устойчивость в агрессивных средах, в том числе и газовых, что позволяет эксплуатировать изделия из них в нефтегазовой промышленности.
  • 5. Инструментальные стали - при строительстве требуется большое число инструментов, которые по прочности должны быть выше, чем строительные материалы. Наиболее высокая износоустойчивость достигается при введении в качестве легирующей добавки вольфрама до 1,5%, но поскольку он дорог, то его заменяют композициями Сг 1,2-1,6%, Мп 0,4-1,1%, Si 0,4%.

Термин «железоуглеродистые сплавы» применяют для обозначения большой группы металлических сплавов, основой которых является железо — сталей. Несмотря на разработку в последние десятилетие новых выдающихся материалов, сплавы железа до сих пор являются наиболее важными и широко применяемыми металлическими материалами, которые применяют в промышленной практике. Их количество во всем мире, раз в десять превышают количество всех других металлических материалов вместе взятых.

Железоуглеродистые сплавы – стали

Популярность сталей можно объяснить несколькими факторами:
1) Руды, из которых производится железо, относятся к наиболее доступным минералам, которые находят в земной коре. Около 4,2 % земной коры составляют различные железные руды. Из этих руд железо можно извлекать относительно простыми и дешевыми методами по сравнению с другими металлами.
2) Точка плавления чистого железа составляет 1536 °С. Ниже этой температуры железо существует в виде различных модификаций – альфа-железа, гамма-железа и дельта-железа – в различных температурных интервалах. Поэтому существует много различных термических процессов – и при не слишком высоких температурах – которые дают возможность выгодно модифицировать свойства сплавов железа в очень широком диапазоне.
3) Ниже температуры 769 °С – точки Кюри – железо становится ферромагнитным, что делает возможным применение стали во многочисленных электротехнических приложениях.

Легирующие элементы как примеси

Сплавы железа, кроме самого железа – основного или базового металла – всегда содержат углерод, который является для них основным легирующим элементом. Стали обычно также содержат в небольших количествах и другие элементы. В ходе процесса производства чугуна и стали все стали неизбежно получают некоторое содержание марганца, кремния, серы и фосфора. Эти элементы входят металл, как примеси из исходного сырья или продуктов сгорания. В некоторых случаях эти элементы добавляют к исходному сырью намеренно для получения специальных свойств сплава.

Поэтому можно сделать вывод, что сплавы железа являются многокомпонентными металлическими сплавами. Однако, пока количества перечисленных элементов не превысят неизбежные уровни содержания, связанные с производством чугуна и стали (0,05-0,4 % кремния – 0,15-0,7 % магния – 0,035 % серы и фосфора), они не оказывают существенного влияния на равновесную фазовую диаграмму двухкомпонентного сплава системы железо-углерод. Поэтому для обыкновенных, нелегированных сплавов железа считают справедливой двухкомпонентную, то есть бинарную, равновесную фазовую диаграмму железо-углерод.

Модификации железа — рычаг термической обработки

Температура плавления чистого железа составляет 1536 °С. В твердом состоянии чистое железо обладает тремя аллотропическим модификациями, а именно:
— дельта-железо – объемно-центрированная кубическая кристаллическая структура в интервале от 1392 до 1536 °С;
— гамма-железо – гранецентрированная кубическая кристаллическая структура в интервале от 911 до 1392 °С;
— альфа-железо – объемно-центрированная кубическая кристаллическая структура при температуре до 911 °С.

Среди всех аллотропических превращений самую важную роль играет превращения альфа → гамма и гамма → альфа. Именно эти превращения дают теоретическую базу для большинства процессов термической обработки.

Железо образует твердые растворы со многими неметаллическими элементами. Оно образует растворы замещения с хромом, никелем, кобальтом и ванадием, тогда как с углеродом образует очень важный раствор внедрения.

Углерод и железо

Растворимость углерода в альфа-железе – феррите – очень незначительная – при комнатной температуре только 0,006 %. В гамма-железе – аустените – растворимость железа на несколько порядков выше – 2,06 % при температуре 1147 °С.

Железо образует с углеродом не только твердые растворы, но металлические соединения. Заместительным соединением железа и углерода является карбид железа – цементит – Fe 3 C. Основным свойством карбида железа является его высокая твердость (твердость по Викерсу около 900) и высокая хрупкость. Карбид железа практически не поддается никакой деформации. Температура плавления карбида железа – 1250 °С. Карбид железа не может считаться равновесной фазой. При определенных условиях он распадается на свои компоненты – железо и углерод. Этот углерод – графит – является уже равновесной фазой.



Loading...Loading...