Кто открыл закон гомологических рядов наследственной изменчивости. Закон гомологических рядов наследственной изменчивости

Гомологические ряды в наследственной изменчивости - понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений.

Закон гомологичных рядов : Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Закономерности в полиморфизме у растений, установленные путем детального изучения изменчивости различных родов и семейств, можно условно до некоторой степени сравнить с гомологическими рядами органической химии, например с углеводородами (CH 4 , C 2 H 6 , C 3 H 8 …).

Суть явления состоит в том, что при изучении наследственной изменчивости у близких групп растений были обнаружены сходные аллельные формы, которые повторялись у разных видов (например, узлы соломины злаков с антоциановой окраской или без, колосья с остью или без и т. п.). Наличие такой повторяемости давало возможность предсказывать наличие ещё не обнаруженных аллелей, важных с точки зрения селекционной работы. Поиск растений с такими аллелями проводился в экспедициях в предполагаемые центры происхождения культурных растений . Следует помнить, что в те годы искусственная индукция мутагенеза химическими веществами или воздействием ионизирующих излучений ещё не была известна, и поиск необходимых аллелей приходилось производить в природных популяциях .

Н. И. Вавилов рассматривал сформулированный им закон как вклад в популярные в то время представления о закономерном характере изменчивости, лежащей в основе эволюционного процесса (например, теория номогенеза Л. С. Берга ). Он полагал, что закономерно повторяющиеся в разных группах наследственные вариации лежат в основе эволюционных параллелизмов и явления мимикрии .

В 70-80-х годах XX века к закону гомологических рядов обратился в своих трудах Медников Б. М. , написавший ряд работ, в которых показал, что именно такое объяснение возникновения сходных, часто до мелочей, признаков в родственных таксонах вполне состоятельно.

Родственные таксоны часто имеют родственные генетические последовательности, слабо различающиеся в принципе, а некоторые мутации возникают с большей вероятностью и проявляются в целом сходно у представителей разных, но родственных, таксонов. Как пример приводятся двувариантная фенотипически ярко выраженная мутация строения черепа и организма в целом: акромегалия и акромикрия , за которые отвечает в конечном счете мутация, изменяющая баланс, своевременное «включение» или «выключение» в ходе онтогенеза гормонов соматотропина и гонадотропина .

Учение о центрах происхождения культурных растений

Учение о центрах происхождения культурных растений сформировалось на основе идей Ч. Дарвина («Происхождение видов», гл. 12, 1859) о существовании географических центров происхождения биологических видов. В 1883 А. Декандоль опубликовал труд, в котором установил географические области начального происхождения главнейших культурных растений. Однако эти области были приурочены к целым континентам или к др. также достаточно обширным территориям. В течение полувека после выхода книги Декандоля познания в области происхождения культурных растений значительно расширились; вышли монографии, посвященные культурным растениям различных стран, а также отдельным растениям. Наиболее планомерно эту проблему разрабатывал в 1926-39 Н. И. Вавилов. На основании материалов о мировых растительных ресурсах он выделял 7 основных географических центров происхождения культурных растений.

1. Южноазиатский тропический центр (около 33 % от общего числа видов культурных растений).

2. Восточноазиатский центр (20 % культурных растений).

3. Юго-Западноазиатский центр (4 % культурных растений).

4. Средиземноморский центр (примерно 11 % видов культурных растений).

5. Эфиопский центр (около 4 % культурных растений).

6. Центральноамериканский центр (примерно 10 %)

7. Андийский (Южноамериканский) центр (около 8 %)

Центры происхождения культурных растений: 1. Центральноамериканский, 2. Южноамериканский, 3. Средиземноморский, 4. Переднеазиатский, 5. Абиссинский, 6. Среднеазиатский, 7. Индостанский, 7A. Юго-восточноазиатский, 8. Восточноазиатский.

Многие исследователи, в том числе П. М. Жуковский, Е. Н. Синская, А. И. Купцов, продолжая работы Вавилова, внесли в эти представления свои коррективы. Так, тропическую Индию и Индокитай с Индонезией рассматривают как два самостоятельных центра, а Юго-Западноазиатский центр разделён на Среднеазиатский и Переднеазиатский, основой Восточно-азиатского центра считают бассейн Хуанхэ, а не Янцзы, куда китайцы как народ-земледелец проникли позднее. Установлены также центры древнего земледелия в Западном Судане и на Новой Гвинее. Плодовые культуры (в том числе ягодные и орехоплодные), имея более обширные ареалы распространения, выходят далеко за пределы центров происхождения, более согласуясь с представлениями Декандоля. Причина этого заключается в преимущественно лесном происхождении (а не предгорном как для овощных и полевых культур), а также в особенностях селекции. Выделены новые центры: Австралийский, Североамериканский, Европейско-Сибирский.

Некоторые растения введены в прошлом в культуру и вне этих основных центров, но число таких растений невелико. Если ранее считалось, что основные очаги древних земледельческих культур - широкие долины Тигра , Евфрата , Ганга , Нила и других крупных рек, то Вавилов показал, что почти все культурные растения появились в горных районах тропиков, субтропиков и умеренного пояса. Основные географические центры начального введения в культуру большинства возделываемых растений связаны не только с флористическим богатством, но и с древнейшими цивилизациями.

Установлено, что условия, в которых происходила эволюция и селекция культуры, накладывают требования к условиям её произрастания. Прежде всего это влажность, длина дня, температура, продолжительность вегетации.

Китайский (Восточноазиатский) центр

Китайский центр охватывает горные области центрального и западного Китая с прилегающими к ним низменными районами. Основа этого очага - области умеренного пояса по реке Хуанхэ. Характеризуется сравнительно высоким температурным режимом, очень большой степенью увлажнения, умеренным вегетационным периодом.

    Рис - японская разновидность

    Цинкэ или Цинке (тибетский ячмень ) - голозёрная разновидность

    Просо

    Чумиза

    Гаолян

    Пайза (Echinochloa frumentacea) - японское просо, дикое просо, ежовник хлебный, однолетнее растение семейства злаков .

    Адзуки или Фасоль угловатая (Vigna angularis )

    Овёс - голозёрная разновидность

    Редька - Дайкон и Лоба

    Пекинская капуста (Brassica pekinensis)

    Китайская капуста (Brassica chinensis)

    Салат спаржевый (Lactuca asparagus)

    Лук-батун

    Лук душистый

    Хлопчатник коротковолокнистый (древесная форма) - спорно

    Перилла

    Актинидия - первичный очаг

    Грецкий орех

    Лещина

    Апельсин - возможно вторичный очаг

    Мандарин

    Кинкан

    Хурма

    Лимонник

    китайская горькая тыква

    Унаби

    Чайное дерево

    Тунговое дерево

    Белая Шелковица (тутовое дерево)

    Камфорный лавр

    Бамбук - некоторые виды

    Женьшень

    Китайский артишок

    Сахарный тростник - местные разновидности

    Мушмула японская (Локва)

    Канатник

    Малина пурпурноплодная

    Личи

    Восковница красная

Также центр является первичным очагом формообразования подсемейств Яблоневые и Сливовые и родов их составляющих, в их числе:

    Яблоня

    Груша

    Абрикос

    Вишня

    Слива

    Миндаль

    Персик

    Боярышник

Индо-малайский (Юго-восточноазиатский) центр

Индо-Малайский центр дополняет Индийский очаг происхождения культурных растений, включая весь Малайский архипелаг, Филиппины и Индокитай. Очень высокие влажность и температура, круглогодичная вегетация. Испытал некоторое влияние Китайского и Индостанского центров

    Рис - первичный очаг

    Хлебное дерево

    Банан

    Кокосовая пальма

    Сахарная пальма

    Саговая пальма

    Арека

    Сахарный тростник - совместно с Индостанским центром

    Помпе́льмус

    Дуриан

    Манильская пенька

    Таро

    Батат

    Пак чой

    Восковая тыква

    Чина - спорно

    Лимон - вторичный очаг

    Поме́ло

    Бергамот

    Лайм

    Померанец

    Бетель

    Кардамон

    Мангустан

    Гвоздичное дерево

    Чёрный перец

    Мускатный орех

    Лонган

    Трихозант

Индийский (Индостанский) центр

Индийский (Индостанский) центр охватывает полуостров Индостан , исключая северо-западные штаты Индии, а также Бирму и индийский штат Ассам . Характеризуется достаточно высоким увлажнением и высокими температурами, а также продолжительной вегетацией. Испытал некоторое влияние Индо-малайского центра (рис, сахарный тростник, цитрусовые )

    Баклажан

    Огурец

    Апельсин - возможно вторичный очаг

    Лимон - первичный очаг

    Цитрон

    Рис - Индийская разновидность

    Дагусса

    Фасоль золотистая

    Долихос

    Люффа

    Сахарный тростник - совместно с Индо-Малайским центром

    Джут

    Кенаф

    Пшеница шарозерная

    Манго

    Кокосовая пальма - вторичный очаг

    Эндивий

    Эскариол

    Базилик

    Горчица сизая

    Мак опийный

    Гречиха

    Сахарная пальма - совместно с Индо-малайским центром

    Хлопчатник коротковолокнистый - спорно

    Ююба

Среднеазиатский центр

Среднеазиатский центр включает северо-западную часть Индии (Пенджаб ), северную часть Пакистана , Афганистан , Таджикистан , Узбекистан и Западный Тянь-Шань . Очень низкое увлажнение (часто грунтовыми водами), достаточно высокие температуры с сильными суточными и сезонными колебаниями, умеренная продолжительность вегетации (сезон дождей ). Данный центр испытал очень сильное влияние со стороны Китайского и Переднеазиатского. Так, почти для всех произошедших здесь плодовых культур он является вторичным.

    Дыня

    Пшеница - некоторые гексаплоидные виды (Triticum compactum , Triticum inflatum )

    Чечевица - мелкозёрная рановидность

    Люцерна

    Абрикос - вторичный очаг

    Виноград - один из очагов

    Миндаль - вторичный очаг

    Фисташка - вторичный очаг

    Яблоня - вторичный очаг

    Груша - вторичный очаг

    Вишня - вторичный очаг

    Слива - вторичный очаг

    Грецкий орех - вторичный очаг

    Гранат - вторичный очаг

    Инжир - вторичный очаг

    Лук репчатый

    Лук-слизун

    Шнитт-лук

    Лук афлатунский

    Лук многоярусный

    Чеснок - основной (возможно первичный) очаг

    Фасоль золотистая - вторичный очаг

    Нут - вторичный очаг

    Конопля

Переднеазиатский центр

Переднеазиатский центр сосредоточен в Передней Азии, включая внутреннюю Малую Азию, все Закавказье, Иран и горную Туркмению. Очень низкое увлажнение, высокие температуры (в отличие от Среднеазиатского и средиземноморского центров редки отрицательные температуры), продолжительные засушливые периоды. Испытал влияние Средиземномрского и Среднеазиатского центра. Практически невозможно определить границы этих трёх центров, так как они сильно перекрываются.

    Пшеница - большинство видов (в том числе T. aestivum, T. durum, T. turgidum, T. polonicum )

    Полба - все виды и разновидности

    Ячмень - двурядный

    Овёс - вторичный очаг

    Рожь

    Горох

    Лён - масличные формы

    Ляллеманция

    Люцерна - совместно со Среднеазиатским центром

    Слива - первичный очаг

    Айва

    Фундук

    Кизил

    Яблоня - вторичный очаг

    Груша - один из основных очагов

    Вишня - вторичный очаг

    Алыча

    Инжир - первичный очаг

    Мушмула германская

    Грецкий орех - вторичный очаг

    Каштан

    Виноград - один из очагов

    Черёмуха - основной очаг

    Фисташка

    Хурма - вторичный очаг

    Боярышник - вторичный очаг

    Абрикос - вторичный очаг

    Черешня - вторичный очаг

    Финиковая пальма

    Лук-порей

    Дыня - вторичный центр

    Пастернак - первичный центр

    Шпинат

    Салат - совместно со Средиземноморским центром.

    Кресс-салат

    Эстрагон - спорно

    Чабер - совместно со Средиземноморским центром.

    Майоран - совместно со Средиземноморским центром.

    Любисток

    Эгилопс

    Эспарцет

    Вика

    Могар - спорно

    Барбарис

Средиземноморский центр

Средиземноморский центр - Балканы, Греция, Италия и большая часть средиземноморского побережья. Характеризуется не очень продолжительным вегетационным периодом (в особенности северные его части), достаточным увлажнением и умеренными температурами. Испытал влияние Переднеазиатского центра.

    Овёс - первичный очаг

    Люпин

    Чина - спорно

    Лён - прядильные формы

    Клевер - первичный очаг

    Оливковое дерево

    Рожковое дерево

    Лавр благородный

    Виноград - основной очаг

    Дуб пробковый

    Горчица белая

    Капуста белокочанная

    Капуста краснокочанная

    Кольраби

    Брокколи

    Брюссельская капуста

    Савойская капуста

    Листовая капуста

    Рапс - спорно (возможно в западной европе)

    Горох - совместно с Переднеазиатским центром

    Боб садовый

    Кабачок (и некоторые другие разновидности тыквы обыкновенной ) - вторичный очаг

    Морковь

    Петрушка - первичный очаг

    Пастернак

    Сельдерей

    Свёкла

    Мангольд

    Редька

    Редис

    Репа - вторичный очаг

    Брюква

    Турнепс

    Скорцонера испанская

    Козлобородник пореелистный

    Цикорий

    Салат - совместно с Переднеазиатским центром

    Щавель кислый

    Ревень

    Спаржа

    Артишок

    Катран

    Мелисса лекарственная

    Иссоп

    Змееголовник

    Мята

    Анис

    Кориандр

    Фенхель

    Тмин

    Огуречная трава

    Хрен

    Сафлор

    Укроп

Эфиопский (Абиссинский) центр

Абиссинский центр - автономный мировой очаг культурных растений в окрестностях эфиопского нагорья: Эфиопия, юго-восточный Судан, Эритрея. Часто его расширяют на всю тропическую Африку . Характеризуется круглогодичной вегетацией, очень высокими температурами и недостаточным увлажнением (в том числе грунтовыми водами). Вплоть до Нового времени был изолирован от всех остальных центров.

    Сорго

    Тэфф

    Кофе

    Кола

    Энсета (Абиссинский банан)

    Арбуз

    Бамия (Окра)

    Ямс - некоторые виды

    Клещевина

    Кунжут

    Нут - вторичный очаг

    Просо - местные разновидности

    Масличная пальма - Западная Африка

    Вигна (коровий горох)

    Хлопчатник - диплоидные виды (стали родоночальникамии ныне существующих американских культурных видов, но сами небыли окультурены)

    Калебаса - вторичный очаг

    Кивано

    Сикомор

    Мелотрия шершавая

    Лук-шалот

Центральноамериканский центр

Центральноамериканский центр - южная Мексика, Центральная Америка, отчасти Антильские острова. Преимущественно умеренное увлажнение (увеличивается с северо-запада на юго-восток), достаточно высокие температуры, с сильными суточными и сезонными колебаниями, умеренная продолжительность вегетации (сезон дождей).

    Кукуруза

    Фасоль обыкновенная

    Тыква обыкновенная - первичный очаг

    Батат

    Ангурия (Антильский огурец)

    Какао

    Перец овощной

    Подсолнечник

    Топинамбур

    Авокадо

    Хлопчатник обыкновенный - спонтанный тетраплоидный гибрид Африканского и Южноамериканского

    Агава

    Табак

    Махорка

    Папайя

    Пекан

    Томат - вторичный очаг

    Физалис

    Чайот

    Хикама

Южноамериканский (Перуано-Эквадоро-Боливийский или Андийский) центр

Южноамериканский (Перуано-эквадоро-боливийский) центр охватывает горные области и плоскогорья Колумбии , Эквадора , Перу , Боливии . Достаточно высокие температуры, недостаточное увлажнение. Испытал некоторое влияние Центральноамериканского центра (причём взаимно).

    Папайя - совместно с Центральноамериканским центром

    Картофель - вид Solanum andigena и некоторые другие

    Настурция клубненосная

    Кислица клубненосная

    Уллюко клубненосный

    Якон

    Томат - первичный центр

    Тамарилло

    Кока

    Арахис

    Хинное дерево

    Гевея

    Циклантера

    Ананас

    Аноа

    Хлопчатник перуанский (тонковолокнистый)

    Фейхоа

    Бразильский орех

    Страстоцвет

    Фасоль лимская

    Тыква крупноплодная (Тыква лечебная)

    Тыква мускатная

    Тыква фиголистная

    Кукуруза - вторичный центр

    Амарант

    Гигантская гранадилла

    Сладкая гранадилла

    Жёлтая гранадилла

    Банановая гранадилла

    Чулюпа

    Наранхилла

    Кокона

    Пепино

    Лукума

    Арракача

    Мака перуанская

Дополнительно к основному Южноамериканскому центру выделено ещё два субцентра:

Чилоандский субцентр

Остров Чилоэ вблизи Чили . Имеет низкие температуры и повышенное увлажнение.

    Картофель - вид Solanum tuberosum

    Земляника чилийская

    Угни

Бразильско-парагвайский субцентр

Расположен в верховьях реки Парана в юго-восточной части Бразильского нагорья . Имеет достаточные увлажнение и температуры, круглогодичную вегетацию.

    Маракуйя

    Падуб парагвайский

    Имбу

    Маниок - совместно с Андийским центром

Иногда (в особенности для плодовых культур) выделяют также:

Австралийский центр

Включает Австралийский континент и Новую Зеландию. Недостаточное увлажнение, высокие температуры, круглогодичная вегетация. Образовался в Новейшее время .

    Эвкалипт

    Акация

    Австралийский орех

    Киви (Актинидия) - вторичный очаг

    Унаби - вторичный очаг

    Шпинат Новозеландский

    Новозеландский лён

Североамериканский центр

Включает преимущественно восток современных США. Высокая влажность, умеренные температуры, достаточная продолжительность вегетации. Испытал влияние Центральноамериканского центра (а с момента открытия Америки и Евразиатских).

    Цицания водная

    Слива канадская (чёрная)

    Слива американская

    Крыжовник американский

    Клюква крупноплодная

    Орех калифорнийский - Juglans californica

    Орех чёрный

    Земляника виргинская

    Малина чёрная

    Голубика

    Ежевика

    Виноград - вторичный центр (гибриды европейского Vitis vinifera и местного Vitis labrusca )

    Люпин

    Рябчик камчатский

    Ирга

    Азимина

Европейско-Сибирский центр

Включает обширные территории умеренного пояса Евразии. На большей части имеет сравнительно хорошее увлажнение, непродолжительный период вегетации и невысокие температуры. Отличительным признаком региона можно назвать также продолжительный период с отрицательными температурами и устойчивым снежным покровом. Испытал сильное влияние Средиземноморского и Переднеазиатского центров.

    Сахарная свёкла

    Лён - вторичный очаг

    Клевер красный

    Клевер белый

    Рыжик

    Яблоня - вторичный очаг

    Вишня - первичный очаг

    Черешня

    Облепиха

    Чёрная смородина

    Крыжовник

    Лещина

    Груша - вторичный очаг

    Земляника садовая - гибрид чилийской и виргинской

    Земляника мускатная (Клубника)

    Жимолость

    Лук алтайский

    Репа - первичный очаг

    Арония черноплодная - происходит из Северной Америки, но окультурена в России

    Рябина домашняя

    Брусника

    Красная смородина

    Шиповник

    Закон, который был открыт выдающимся отечественным ученым Н. И. Вавиловым, является мощнейшим стимулятором селекции новых видов растений и животных, которые выгодны для человека. Даже в настоящее время данная закономерность играет большую роль в изучении эволюционных процессов, разработке акклиматизационной базы. Результаты исследований Вавилова важны и для истолкования различных биогеографических явлений.

    Сущность закона

    Вкратце закон гомологических рядов звучит следующим образом: спектры изменчивости у родственных типов растений похожи между собой (нередко это бывает строго фиксированное число тех или иных вариаций). Вавилов изложил свои идеи на III селекционном съезде, который проходил в 1920 году в Саратове. Чтобы продемонстрировать действие закона гомологических рядов, он собрал всю совокупность наследственных признаков культурных растений, расположил их в одной таблице и сравнил известные на тот момент сорта и подвиды.

    Изучение растений

    Вместе со злаковыми Вавилов рассматривал и бобовые. Во многих случаях обнаружилась параллельность. Несмотря на то что у каждого семейства фенотипические признаки различались, у них были свои особенности, форма выражения. К примеру, цвет семян практически у любого культурного растения варьировался от самого светлого до черного. У хорошо изученных исследователями культурных растений было обнаружено до нескольких сотен признаков. У других же, что являлись на тот момент менее изученными или же дикими родственниками окультуренных растений, признаков наблюдалось гораздо меньше.

    Географические центры распространения видов

    Основой для открытия закона гомологических рядов послужил материал, который Вавилов собрал во время своей экспедиции по странам Африки, Азии, Европы и Америки. Первые предположения о том, что существуют некие географические центры, откуда берут свое начало биологические виды, было сделано швейцарским ученым А. Декандолем. По его представлениям, когда-то эти виды охватывали большие территории, иногда и целые континенты. Однако именно Вавилов был тем исследователем, который смог изучить многообразие растений на научной основе. Он использовал метод, называемый дифференцированным. Вся та коллекция, которая была собрана исследователем во время экспедиций, подвергалась тщательному анализу с помощью морфологических и генетических методов. Так можно было определить конечную область сосредоточения разнообразия форм и признаков.

    Карта растений

    Во время этих поездок ученый не запутался в многообразии видов различных растений. Всю информацию он наносил при помощи цветных карандашей на карты, затем переводя материал в схематический вид. Таким образом, ему удалось обнаружить, что на всей планете существует всего несколько центров разнообразия окультуренных растений. Ученый показал непосредственно при помощи карт, как из этих центров виды «расползаются» по другим географическим регионам. Некоторые из них уходят на небольшое расстояние. Другие завоевывают весь мир, как это произошло с пшеницей и горохом.

    Следствия

    Согласно закону гомологической изменчивости, все генетически близкие между собой сорта растений обладают приблизительно равными рядами наследственной изменчивости. При этом ученый допускал, что даже похожие внешне признаки могут иметь различную наследственную основу. Учитывая тот факт, что каждый из генов имеет способность к мутациям в разных направлениях и что данный процесс может протекать без определенного направления, Вавилов сделал предположение, что и количество генных мутаций у родственных видов будет приблизительно одинаковым. Закон гомологических рядов Н. И. Вавилова отражает общие закономерности процессов генной мутации, а также формообразования различных организмов. Он является главной основой изучения биологических видов.

    Вавилов показал также и следствие, которое вытекало из закона гомологических рядов. Оно звучит следующим образом: наследственная изменчивость практически у всех видов растений варьируется параллельно. Чем более близкими между собой являются виды, тем в большей степени проявляется данная гомология признаков. Сейчас этот закон повсеместно применяется в селекции сельскохозяйственных культур, а также животных. Открытие закона гомологических рядов является одним из самых крупных достижений ученого, которое принесло ему мировую славу.

    Происхождение растений

    Ученый создал теорию о происхождении культурных растений в отдаленных друг от друга в различные доисторические эпохи точках земного шара. Согласно закону гомологических рядов Вавилова, у родственных видов растений и животных обнаруживаются похожие вариации изменчивости признаков. Роль этого закона в растениеводстве и животноводстве можно сопоставить с той ролью, которую играет таблица периодических элементов Д. Менделеева в химии. Используя свое открытие, Вавилов пришел к выводу о том, какие территории являются первоисточниками определенных типов растений.

    • Китайско-японскому региону мир обязан происхождением риса, проса, голозерных форм овса, многих типов яблонь. Также территории данного региона являются родиной ценных сортов слив, восточной хурмы.
    • кокосовой пальмы и сахарного тростника - Индонезийско-Индокитайский центр.
    • С помощью закона гомологических рядов изменчивости Вавилову удалось доказать огромное значение полуострова Индостан в развитии растениеводства. Данные территории являются родиной некоторых типов фасоли, баклажанов, огурцов.
    • На территории среднеазиатского региона традиционно выращивались грецкие орехи, миндаль, фисташки. Вавилов открыл, что именно эта территория является родиной репчатого лука, а также первичных типов моркови. В древности выращивали абрикосы. Одними из самых лучших в мире являются дыни, которые были выведены на территориях Средней Азии.
    • На Средиземноморских территориях впервые появился виноград. Здесь также происходил процесс эволюции пшеницы, льна, различных сортов овса. Также достаточно типичных элементов флоры средиземноморья является оливковое дерево. Здесь же началось и окультуривание люпина, клевера и льна.
    • Флора австралийского континента подарила миру эвкалипты, акации, хлопчатник.
    • Африканский регион - родина всех типов арбузов.
    • На Европейско-Сибирских территориях происходило окультуривание сахарной свеклы, сибирской яблони, лесного винограда.
    • Южная Америка - родина хлопчатника. Территория Анд является и некоторых видов томатов. На территориях Древней Мексики произрастала кукуруза и некоторые виды фасоли. Также здесь возник табак.
    • На территориях Африки древний человек использовал сначала только местные виды растений. Черный континент является родиной кофе. На территории Эфиопии впервые появилась пшеница.

    Используя закон гомологических рядов изменчивости, ученый может выявить центр происхождения растений по тем признакам, которые схожи с формами видов из другой географической местности. Помимо необходимого разнообразия флоры, для того чтобы возник крупный очаг разнообразных культурных растений, нужна также и земледельческая цивилизация. Так считал Н. И. Вавилов.

    Одомашнивание животных

    Благодаря открытию закона гомологических рядов наследственной изменчивости стало возможным открытие тех мест, где когда-то впервые произошло одомашнивание животных. Считается, что оно происходило тремя путями. Это сближение человека и животных; насильственное приручение молодых особей; одомашнивание взрослых особей. Территории, на которых происходило одомашнивание диких животных, предположительно находятся в местах обитания их диких сородичей.

    Приручение в разные эпохи

    Считается, что собака была одомашнена в эпоху мезолита. Свиней и коз человек начал разводить в эпоху неолита, а немного позднее были приручены и дикие лошади. Однако еще недостаточно ясен вопрос о том, кем были предки современных домашних животных. Считается, что предками крупного рогатого скота были туры, лошадей - тарпаны и лошади Пржевальского, домашнего гуся - дикий серый гусь. Сейчас процесс одомашнивания животных нельзя назвать завершенным. Например, в процессе приручения находятся песцы и дикие лисы.

    Значение закона гомологических рядов

    При помощи данного закона можно не только установить происхождение определенных видов растений и очаги приручения животных. Он позволяет предсказать появление мутаций, сравнивая закономерности мутирования у других типов. Также с помощью данного закона можно предсказать изменчивость признака, возможность появления новых мутаций по аналогии с теми генетическими отклонениями, что были обнаружены у других видов, родственных данному растению.

    Задачи урока

    1. Познакомить учащихся с формами наследственной изменчивости, их причинами и влиянием на организм. Развить у школьников умение классифицировать формы изменчивости, сравнивать их друг с другом; приводить примеры, иллюстрирующие проявление каждой из них;
    2. Сформировать знания о видах мутаций;
    3. Сформулировать закон гомологических рядов и объяснить его значение;
    4. Убедить старшеклассников в том, что мутационный процесс очень важен для эволюции органического мира и селекционной работы человека.

    Демонстрации

    • Схема различных типов хромосомных мутаций.
    • Схема полиплоидизации.
    • Гомологические ряды в наследственной изменчивости.

    Термины Генотипическая изменчивость, мутация, генные мутации, геномные мутации, хромосомные мутации:

    • инверсия;
    • делеция;
    • дупликация;
    • транслокация.

    Задания для учащихся:

    1. Сформулировать закон гомологических рядов и привести примеры.
    2. Познакомиться с биографией Н.И. Вавилова и знать его основные научные открытия.
    3. Составить таблицу "Формы изменчивости"
    1. Организационный момент.
    2. Проверка знаний и умений.

    Фронтальная работа

    1. Что изучает генетика?
    2. Что означает термин наследственность?- изменчивость?
    3. Какие формы изменчивости вам известны?
    4. Что означает норма реакции?
    5. В чем проявляются закономерности модификационной изменчивости?
    6. Как изменение условий сказывается на количественных и качественных признаках? Приведите примеры
    7. Что такое норма реакции? Почему разнообразие качественных признаков в малой степени зависит от влияния условий среды?
    8. Какое практическое значение в сельском хозяйстве имеет значение нормы реакции животных и растений?

    Индивидуальная работа на компьютере - тестовая работа

    Заполните схему:

    Работа учащихся на компьютерах с приложением 1 . (В течении урока выполняются задания 1-5).

    1. Изучение нового материала

    В понятие наследственной изменчивости входят генотипическая и цитоплазматическая изменчивость. Первая делится на мутационную, комбинативную, соотносительную. Комбинативная изменчивость возникает при кроссинговере, независимом расхождении хромосом в мейозе и случайном слиянии гамет при половом размножении. В состав мутационной изменчивости входят геномные, хромосомные и генные мутации. Термин мутация был введен в науку Г. де Фризом. Его биография и основные научные достижения располагаются в разделе. Геномные мутации связаны с возникновением полиплоидов и анэуплоидов. Хромосомные мутации определяются межхромосомными изменениями - транслокацией или внутрихромосомными перестройками: делецией, дупликацией, инверсией. Генные мутации объясняются изменениями в последовательности нуклеотидов: увеличением или уменьшением их числа (делеция, дупликация), вставкой нового нуклеотида или поворотом участка внутри гена (инверсия). Цитоплазматическая изменчивость связана с ДНК, которая находится в пластидах и митохондриях клетки. Наследственная изменчивость родственных видов и родов подчиняется закону гомологических рядов Вавилова.

    Модификационная изменчивость отражает изменения фенотипа, не затрагивая генотипа. Противоположной ей является другая форма изменчивости - генотипическая, или мутационная (по Дарвину - наследственная, неопределенная, индивидуальная), меняющая генотип. Мутация - стойкое наследственное изменение генетического материала.

    Отдельные изменения генотипа называются мутациями .

    Понятие о мутациях было введено в науку голландцем де Фризом. Мутации - это наследственные изменения, приводящие к увеличению или уменьшению количества генетического материала, к изменению нуклеотидов или их последовательности.

    Классификация мутаций

    • Мутации по характеру проявления: Доминантные,рецессивные.
    • Мутаций по месту их возникновения: соматические, генеративные.
    • Мутации по характеру появления: спонтанные, индуцированные.
    • Мутации по адаптивному значению: полезные, вредные, нейтральные. (Летальные, полулетальные.)

    Большинство возникающих мутаций рецессивны и неблагоприятны для организма, даже могут вызвать его гибель. В сочетании с аллельным доминантным геном рецессивные мутации не проявляются фенотипически. Мутации имеют место в половых и в соматических клетках. Если мутации происходят в половых клетках, то они называются генеративными и проявляются в том поколении, которое развивается из половых клеток. Изменения в вегетативных клетках называются соматическими мутациями. Такие мутации приводят к изменению признака только части организма, развивающегося из измененных клеток. У животных соматические мутации не передаются последующим поколениям, поскольку из соматических клеток новый организм не возникает. Иначе у растений: в гибридных клетках растительных организмов репликация и митоз могут осуществляться в разных ядрах несколько по-разному. На протяжении ряда клеточных генераций происходит потеря отдельных хромосом и отбираются определенные кариотипы, способные сохраняться в течение многих поколений.

    Различают несколько типов мутаций по уровню возникновения:

    1. Геномные мутации- изменение плоидности, т.е. числа хромосом (численные хромосомные аберрации), встречающиеся особенно часто у растений;
    2. Хромосомные мутации - изменения структуры хромосом (структурные хромосомные аберрации);
    3. Генные мутации - изменения в отдельных генах;

    Геномные мутации

    Полиплоидия - кратное увеличение числа хромосом.
    Анэуплоидия - утеря или появление лишних хромосом в результате нарушения мейоза.

    Возникают вследствие изменения числа или структуры хромосом. Изменения плоидности наблюдаются при нарушениях расхождения хромосом.

    Хромосомные болезни

    • Генеративные мутации
    • ХХУ; ХУУ- синдром Клайнфельтера.
    • ХО- синдром Шершевского-Тернера.

    Аутосомные мутации

    • Синдром Патау (по 13 хромосоме).
    • Синдром Эдвардса (по 18 хромосоме).
    • Синдром Дауна (по 21 хромосоме).

    Синдром Кляйнфельтера.

    ХХY и XXXY – синдром Кляйнфельтера. Частота встречаемости 1:400 – 1:500. Кариотип – 47, XXY, 48, XXXY и др. Фенотип мужской. Женский тип телосложения, гинекомастия. Высокий рост, относительно длинные руки и ноги. Слабо развит волосяной покров. Интеллект снижен.

    Синдром Шершевского-Тернера

    X0 – синдром Шерешевского -Тернера (моносомия Х). Частота встречаемости 1:2000 – 1:3000. Кариотип 45,Х. Фенотип женский. Соматические признаки: рост 135 – 145 см, крыловидная кожная складка на шее (от затылка к плечу), низкое расположение ушей, недоразвитие первичных и вторичных половых признаков. В 25% случаев имеются пороки сердца и аномалии работы почек. Интеллект страдает редко.

    Синдром Патау - Трисомия по 13-й хромосоме (синдром Патау) обнаруживается у новорожденных с частотой около 1:5000 - 1:7000 и связана с широким спектром пороков развития. Для СП характерны множественные врожденные пороки развития головного мозга и лица. Это группа ранних нарушений формирования головного мозга, глазных яблок, костей мозговой и лицевой частей черепа. Окружность черепа обычно уменьшена. Лоб скошенный, низкий; глазные щели узкие, переносье запавшее, ушные раковины низко расположенные и деформированные. Типичный признак СП - это расщелины верхней губы и неба.

    Синдром Дауна - Болезнь, обусловленная аномалией хромосомного набора (изменением числа или структуры аутосом), основными проявлениями которой являются умственная отсталость, своеобразный внешний облик больного и врожденные пороки развития. Одна из наиболее распространенных хромосомных болезней, встречается в среднем с частотой 1 на 700 новорожденных. На ладони часто обнаруживают поперечную складку

    Хромосомные мутации

    Хромосомных мутаций, связанных с изменением структуры хромосом, известно несколько типов:

    • делеция - выпадение участка хромосомы;
    • дупликация - удвоение участка хромосомы;
    • инверсия - поворот участка хромосомы на 180 градусов;
    • транслокация - перенос участка хромосомы на другую хромосому.
    • транспозиция - перемещения в одной хроосоме.

    При делеции и дупликации происходит изменение количества генетического материала. Фенотипически они проявляются в зависимости от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Дупликации могут привести к возникновению новых генов. При инверсиях и транслокациях количество генетического материала не изменяется, но меняется его расположение. Такие мутации также играют важную роль, поскольку скрещивание мутантов с исходными формами затруднено, а их гибриды F1 чаще всего стерильны.

    Делеции. У человека в результате делеции:

    • синдром Вольфа- утрачен участок в большой хромосоме 4 –
    • синдром “кошачьего крика”- при делеции в хромосоме 5 . Причина: хромосомная мутация; потеря фрагмента хромосомы в 5-й паре.
      Проявление: неправильное развитие гортани, крики, подобные кошачьим, I раннем детском возрасте, отставание в физическом и умственном развитии

    Инверсии

    • Это изменение структуры хромосомы, вызванное поворотом на 180° одного из внутренних её участков.
    • Подобная хромосомная перестройка - следствие двух одновременных разрывов в одной хромосоме.

    Транслокации

    • В ходе транслокации происходит обмен участками негомологичных хромосом, но общее число генов не изменяется.

    Замена оснований

    1. фенилкетонурия. Проявление: нарушение расщепления фенилаланина; этим обусловлено слабоумие, вызываемое гиперфенилаланинемией. При своевременно назначенной и соблюдаемой диете (питание, обедни фенилаланином) и применении определенных медикаментов, клинические проявления этого заболевания практически отсутствуют
    2. серповидно- клеточная анемия.
    3. синдром Морфана.

    Генные (точечные) мутации связаны с изменениями в последовательности нуклеотидов. Нормальный ген (свойственен дикому типу) и возникшие из него мутантные гены называются аллелями.

    При генных мутациях происходят следующие структурные изменения:

    Генная мутация

    Например, серповидноклеточная анемия представляет собой результат замены одного основания в b-цепи глобина крови (аденин заменяется тимином). При делеции и дупликации сдвигается последовательность триплетов и возникают мутанты со “сдвигом рамки”, т.е. смещениями границ между кодонами - с места мутации изменяются все последующие аминокислоты.

    Первичная структура гемоглобина здоровых (1) и больных серповидно-клеточной анемией (2).

    1. - вал- гис-лей-тре – про-глут. к-та- глу-лиз
    2. - вал- гис-лей-тре – валин - глу-лиз

    Мутация в гене бета-гемоглобина

    Синдром Морфана

    Высокий выброс адреналина, характерный для заболевания, способствует не только развитию сердечно-сосудистых осложнений, но и появлению у некоторых лиц особой силы духа и умственной одаренности. Способы лечения неизвестны. Считают, что ею болели Паганини, Андерсен, Чуковский

    Гемофилия

    Мутагены- факторы, вызывающие мутации: биологические, химические физические.

    Экспериментально частоту мутаций можно увеличить. В природных условиях мутации происходят при резких изменениях температуры, под влиянием ультрафиолетового излучения и по другим причинам. Однако в большинстве случаев истинные причины мутаций остаются неизвестными. В настоящее время разработаны методы, позволяющие увеличить число мутаций искусственными средствами. Впервые резкое повышение числа возникающих наследственных изменений было получено под влиянием лучей Рентгена.

    • Физические факторы (различные виды ионизирующей радиации, ультрафиолетовое излучение, лучи Рентгена)
    • Химические факторы (инсектициды, гербициды, свинец, наркотики, алкоголь, некоторые лекарственные препараты и др.вещества)
    • Биологические факторы (вирусы оспы, ветряной оспы, эпидемического паротита, гриппа, кори, гепатита и др.)

    Евгеника.

    Евгеника – наука об улучшении породы человечества.

    Евгеника в переводе с греческого – рождение лучших. Эта скандальная наука ищет пути улучшения наследственных качеств человека, используя генетические принципы. Ей всегда было трудно оставаться чистой наукой: за ее развитием пристально следила политика, распоряжавшаяся ее плодами по-своему.

    В древней Спарте селекцию людей проводили более кардинально, уничтожая младенцев, не обладающих физическими качествами, необходимыми для будущего воина. Отцом же евгеники, поставившей ее на научную основу, стал Френсис Гальтон в 1869 году. Проанализировав родословные сотни талантливых людей, он пришел к выводу: гениальные способности наследуются.

    Сегодня евгеника направлена на искоренение в человеческом роде наследственных заболеваний. Любой биологический вид будет находится на грани уничтожения, если его существование вступает в противоречие с природой. Почти половина новорожденных из тысячи рождается с какой-либо наследственной патологией. В мире в год появляется на свет 2 миллиона таких детей. Среди них - 150 тысяч с синдромом Дауна. Давно всем известно, что легче предупредить рождение ребенка, чем бороться с недугами. Но такие возможности появились только в наше время. Дородовая диагностика и генетическое консультирование помогает решить проблему о целесообразности родов.

    Современные возможности медико-генетического консультирования позволяют определить во время планирования беременности риск наследственных заболеваний.

    Николай Иванович Вавилов

    Николай Иванович Вавилов (1887–1943) – русский ботаник, генетик, растениевод, географ. Сформулировал закон гомологических рядов наследственной изменчивости. Создал учение о центрах происхождения культурных растений.

    Русским ученым Н. И. Вавиловым была установлена важная закономерность, известная под названием закона гомологических рядов в наследственной изменчивости: виды и рода, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. На основе этого закона можно предвидеть нахождение сходных изменений у родственных видов и родов. Им составлена таблица гомологических рядов в семействе

    злаков. У животных также проявляется эта закономерность: например, у грызунов существуют гомологические ряды по окраске шерсти.

    Закон гомологических рядов

    Изучая наследственную изменчивость культурных растений и их предков Н.И. Вавилов сформулировал закон гомологических рядов: “Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.”

    На примере семейства злаковых, Вавилов показал, что сходные мутации обнаруживаются у целого ряда видов этого семейства. Так, черная окраска семян встречается у ржи, пшеницы, ячменя, кукурузы и других, за исключением овса, пырея, проса. Удлиненная форма зерна – у всех изученных видов. У животных также встречаются сходные мутации: альбинизм и отсутствие шерсти у млекопитающих, короткопалость у крупного рогатого скота, овец, собак, птиц. Причина появления сходных мутаций – общность происхождения генотипов.

    Таким образом, обнаружение мутаций у одного вида дает основание для поисков сходных мутаций у родственных видов растений и животных.

    Закон гомологических рядов

    1. Какие мутантные формы должны возникнуть у близкородственных видов?
    2. Кто является основателем закона гомологических рядов?
    3. Как гласит закон?

    Домашнее задание.

    1. Параграф 24
    2. Найти примеры мутаций в природе.

    устанавливает параллелизм в наследств, изменчивости организмов. Сформулирован Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов злаков и др. семейств, Н. И. Вавилов обнаружил, что: 1. Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны, тем полнее тождество в рядах их изменчивости. 2. Целые семейства растений в общем характеризуются определённым циклом изменчивости, проходящей через все роды, составляющие семейство». Хотя исходно закон касался изменчивости у растений, Н. И. Вавилов указывал на применимость его к животным. Теоретич. основой гомологии рядов фе-нотипич. изменчивости у близких таксономич. групп является представление о единстве их происхождения путём дивер-генпии под действием естеств. отбора. Поскольку общие предки существующих ныне видов обладали определ., спепифич. набором генов, то и их потомки должны обладать, за небольшими исключениями, таким же набором генов. Учитывая, что каждый ген может мутировать в разных направлениях (множеств, аллелизм) и что мутационный процесс имеет ненаправленный характер, естественно предполагать, что спектр изменений одинаковых генов у особей близких видов будет сходным. Т. о., в основе закона гомологич. рядов (3. г. р.) лежит параллелизм генотипич. изменчивости у особей со сходным набором генов. Являясь теоретич. основой сравнительной генетики, закон объясняет полиморфность видов и, т. о., обосновывает целостность вида, несмотря на существование в его пределах морфологически чётко различающихся форм. С др. стороны, закон вносит ясность в явление фенотипич. «однородности» мн. видов, края может быть связана с их ге-терозиготностью и явлением доминирования, что и выявляется при инбридинге. 3. г. р., отражая общую закономерность мутационного процесса и формообразования организмов, является биол. основой методов целенаправленного получения нужных наследств, изменений. Он указывает селекционерам направления искусств, отбора, или, как писал Н. И. Вавилов, «что следует искать», причём методы поиска могут быть разными: от нахождения нужных форм в природе или выявления их при инбридинге до получения этих форм с использованием мутагенов. Биохимич. механизмы 3. г. р. широко изучаются на разных объектах - от изменений метаболизма бактерий в процессах микробиол. синтеза до наследств, заболеваний человека.

    ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ

    ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ открытый Н. И. Вавиловым (1920) закон, согласно которому изменчивость близких по происхождению родов и видов растений осуществляется общим (параллельным) путем. Генетически близкие роды и виды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других родственных видов и родов. Закон гомологических рядов, как и периодическая система элементов Д. И. Менделеева в химии, позволяет на основании знания общих закономерностей изменчивости предсказать существование в природе не известных ранее форм с ценными для селекции признаками. Многие такие формы были найдены после опубликования Н. И. Вавиловым закона гомологических рядов. Одним из наглядных примеров перспективности поиска таких форм и практического применения закона гомологических рядов является создание односемянных сортов сахарной свеклы. Более поздними исследованиями закон гомологических рядов был подтвержден у микроорганизмов и животных, у которых обнаружен параллелизм изменчивости морфологических и биохимических признаков.

    Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .


    Смотреть что такое "ЗАКОН ГОМОЛОГИЧЕСКИХ РЯДОВ" в других словарях:

      закон гомологических рядов - homologinių eilių dėsnis statusas T sritis augalininkystė apibrėžtis Lygiagretaus organizmų kitimo dėsnis, pagal kurį genetiškai artimoms augalų rūšims, gentims ir šeimoms yra būdingos lygiagretės (homologinės) paveldimųjų požymių ir savybių… … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

      закон гомологических рядов - биол. Закономерность, устанавливающая параллелизм в изменчивости родственных групп растений (открыт академиком Н. И.Вавиловым) … Словарь многих выражений

      Гомологические ряды в наследственной изменчивости понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений. Закономерности в… … Википедия

      См. Гомологических рядов в наследственной изменчивости закон. .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.) …

      Изменчивости, разработанный советским учёным Н. И. Вавиловым закон, устанавливающий параллелизм в изменчивости организмов. Ещё Ч. Дарвин (1859 68) обратил внимание на далеко идущий параллелизм в изменчивости (См. Изменчивость) близких… … Большая советская энциклопедия

      Устанавливает параллелизм в наследств, изменчивости организмов. Сформулирован Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов злаков и др. семейств, Н. И. Вавилов обнаружил, что: 1. Виды и роды, генетически близкие между… … Биологический энциклопедический словарь

      В наследственной изменчивости сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение) и … Большой Энциклопедический словарь

      В наследственной изменчивости, сформулирован Н. И. Вавиловым в 1920, устанавливает параллелизм в изменчивости родственных групп растений. Как было показано позже, в основе этого явления лежит гомология генов (их одинаковое молекулярное строение)… … Энциклопедический словарь

      Открытая рус. генетиком Н.И. Вавиловым в 1920 г. закономерность, устанавливающая параллелизм (сходство) в наследственной (генотипической) изменчивости у родственных организмов. В формулировке Вавилова закон гласит: «Виды и роды, генетически… … Биологический энциклопедический словарь

    Книги

    • Закон гомологических рядов в наследственной изменчивости , Н. И. Вавилов. В книге впервые публикуются все три издания "Закона гомологических рядов в наследственной изменчивости", в том числе и английское 1922 г. Включены также работы, которые выходили только один…


Loading...Loading...