При бета распаде массовое число ядра уменьшится. Что такое альфа-распад и бета-распад? Бета-распад, альфа-распад: формулы и реакции. Основные разновидности радиоактивных превращений

· Цепная ядерная реакция

.

В β + -распаде протон превращается в нейтрон, позитрон и нейтрино :

.

Таким образом, в отличие от β − -распада , β + -распад не может происходить в отсутствие внешней энергии, поскольку масса самого нейтрона больше массы протона. β + -распад может случаться только внутри ядер, где абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра. Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц.

Во всех случаях, когда β + -распад энергетически возможен (и протон является частью ядра с электронными оболочками), он сопровождается процессом электронного захвата , при котором электрон атома захватывается ядром с испусканием нейтрино:

.

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ), то электронный захват происходит, не сопровождаясь конкурирующим процессом позитронного распада; последний в этом случае запрещён законом сохранения энергии .

Когда протон и нейтрон являются частями атомного ядра , эти процессы распада превращают один химический элемент в другой. Например:

(β − распад), (β + распад), (электронный захват).

Бета-распад не меняет число нуклонов в ядре A , но меняет только его заряд Z . Таким образом может быть введён набор всех нуклидов с одинаковым A ; эти изобарные нуклиды могут превращаться друг в друга при бета-распаде. Среди них некоторые нуклиды (по крайней мере, один) бета-стабильны, поскольку они представляют собой локальные минимумы излишка массы: если такое ядро имеет (A , Z ) числа, соседние ядра (A , Z −1) и (A , Z +1) имеют больший излишек массы и могут распадаться посредством бета-распада в (A , Z ), но не наоборот. Необходимо заметить, что бета-стабильное ядро может подвергаться другим типам радиоактивного распада (альфа-распаду , например). Большинство изотопов, существующих в природных условиях на Земле, бета-стабильны, но существует несколько исключений с такими большими периодами полураспада , что они не успели исчезнуть за примерно 4,5 млрд лет, прошедшие с момента нуклеосинтеза . Например, 40 K , который испытывает все три типа бета-распада (бета-минус, бета-плюс и электронный захват), имеет период полураспада 1.277×10 9 лет.

Бета-распад можно рассматривать как переход между двумя квантовомеханическими состояниями, обусловленный возмущением, поэтому он подчиняется золотому правилу Ферми .

График Кюри

График Кюри (известен также как график Ферми) - диаграмма, используемая для изучения бета-распада. Это энергетическая зависимость квадратного корня из количества излучённых бета-частиц с данной энергией, делённая на функцию Ферми. Для разрешённых (и некоторых запрещённых) бета-распадов график Кюри линеен (прямая линия, наклонённая в сторону роста энергии). Если нейтрино имеют конечную массу, то график Кюри вблизи точки пересечения с осью энергии отклоняется от линейного, благодаря чему появляется возможность измерить массу нейтрино.

Двойной бета-распад

Некоторые ядра могут испытывать двойной бета-распад (ββ-распад), при котором заряд ядра меняется на две единицы. В самых практически интересных случаях такие ядра бета-стабильны (простой бета-распад энергетически запрещён), поскольку когда β- и ββ-распады оба разрешены, вероятность β-распада (обычно) намного больше, мешая исследованиям очень редких ββ-распадов. Таким образом, ββ-распад обычно изучается только для бета-стабильных ядер. Как и простой бета-распад, двойной бета-распад не меняет A ; следовательно, как минимум один из нуклидов с данным A должен быть стабильным по отношению как к простому, так и к двойному бета-распаду.

История

Исторически исследование бета-распада привело к первому физическому свидетельству существования нейтрино . В году Лиза Мейтнер и Отто Ган провели эксперимент, который показал, что энергии электронов, испускаемых при бета-распаде, имеют непрерывный, а не дискретный спектр. Это находилось в очевидном противоречии с законом сохранения энергии, поскольку получалось, что часть энергии терялась в процессах бета-распада. Вторая проблема заключалась в том, что спин атома азота -14 был равен 1, что противоречило предсказанию Резерфорда - ½. В известном письме, написанном в году, Вольфганг Паули предположил, что помимо электронов и протонов атомы содержат очень легкую нейтральную частицу, которую он назвал нейтроном. Он предположил, что этот «нейтрон» испускается при бета-распаде и раньше просто не наблюдался. В году

В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.


1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число - на 4.


ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;


88 226Ra→2 4He + 86 222Ra + γ изл.


Альфа - распад подвергается более 10% радиоактивных изотопов.


2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов:


а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в , а ядро испускает и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.


АZ Х → АZ+1 У + е- + v-; 24194Pu→24195Am + e- + v-; 6429Cu → 6430Zn + e- + v-; 4019K → 4020Ca + e- + v-.


При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.


13785Cs → 13756 Ва + е -+ v- + γ изл.;


б) позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И.Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в , заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.


AZX → AZ-1У + е+ + v+; 3015P → 3014Si + e+ + v+; 6428Ni + e+ + v+.


Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон-электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - гамма-фотоны;


в) электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в . Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный , заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.


AZХ + е- → AZ-1 У + v- + рентгеновское излучение;


4019К + е- → Аr + v-+ рентгеновское излучение;


6429Сu + е- → 6428 Ni+v- + рентгеновское излучение.


Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 15957La, 17671Lu).


Некоторые ядра могут распадаться двумя или тремя способами: путем альфа- и бета-распада и К-захвата.


Калий-40 подвергается, как уже отмечалось, электронному распаду - 88%, и К-захвату - 12%. Медь-64 (6428Сu) превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).


3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета-распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.


13153I → 13154Xe + e- +v- +2γ кванта; 22688Ra → 42He + 22286Rn + γ квант.


4. - испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов:


лютеций - 151 (15171Lu) - в нем на 24 нейтрона меньше, чем в стабильном изотопе 17671Lu.

Накопители тяжелых ионов открывают принципиально новые возможности в исследовании свойств экзотических ядер. В частности, они позволяют накапливать и в течение длительного времени использовать полностью ионизованные атомы – «голые» ядра. В результате становится возможным исследовать свойства атомных ядер, у которых нет электронного окружения и в которых отсутствует кулоновское воздействие внешней электронной оболочкис атомным ядром.

Рис. 3.2 Схема e-захвата в изотопе (слева) и полностью ионизованных атомах и (справа)

Распад на связанное состояние атома был впервые обнаружен в 1992 г. Наблюдался β - -распад полностью ионизованного атома на связанные атомные состояния . Ядро 163 Dy на N-Z диаграмме атомных ядер помечено черным цветом. Это означает, что оно является стабильным ядром. Действительно, входя в состав нейтрального атома, ядро 163 Dy стабильно. Его основное состояние (5/2 +) может заселятся в результате e-захвата из основного состояния (7/2 +) ядра 163 Ho. Ядро 163 Ho, окруженное электронной оболочкой,β - -радиоактивно и его период полураспада составляет ~10 4 лет. Однако это справедливо только если рассматривать ядро в окружении электронной оболочки. Для полностью ионизированных атомов картина принципиально другая. Теперь основное состояние ядра 163 Dy оказывается по энергии выше основного состояния ядра 163 Ho и открывается возможность для распада 163 Dy (рис. 3.2)

→ + e - + e . (3.8)

Образующийся в результате распада электрон может быть захвачен на вакантную К или L-оболочку иона . В результате распад (3.8) имеет вид

→ + e - + e (в связанном состоянии).

Энергии β-распадов на K и L-оболочки равны соответственно (50.3±1) кэВ и (1.7±1) кэВ. Для наблюдения распада на связанные состояния K- и L-оболочки в накопительном кольце ESR в GSI было накоплено 10 8 полностью ионизированных ядер . В течение времени накопления в результате β + -распада образовывались ядра (рис. 3.3).


Рис. 3.3. Динамика накопления ионов: а - ток накопленных в накопительном кольце ESR ионов Dy 66+ во время разных стадий эксперимента, β- интенсивности ионов Dy 66+ и Ho 67+ , измеренные внешним и внутренним позиционно-чувствительными детекторами соответственно

Так как ионы Ho 66+ имеют практически то же отношение M/q, что и ионы первичного пучка Dy 66+ , они накапливаются на одной и той же орбите. Время накопления составляло ~ 30 мин. Для того, чтобы измерить период полураспада ядра Dy 66+ , накопленный на орбите пучок было необходимо очистить от примеси ионов Ho 66+ . Для очистки пучка от ионов в камеру инжектировалась аргоновая газовая струя плотностью 6·10 12 атом/см 2 , диаметром 3 мм, которая пересекала накопленный пучок ионов в вертикальном направлении. За счет того, что ионыHo 66+ захватывали электроны, они выбывали с равновесной орбиты. Очистка пучка проходила в течение приблизительно 500 с. После чего газовая струя перекрывалась и в кольце продолжали циркулировать ионы Dy 66+ и вновь образовавшиеся (после выключения газовой струи) в результате распада ионы Ho 66+ . Продолжительность этого этапа менялась от 10 до 85 мин. Детектирование и идентификация Ho 66+ базировались на том, что Ho 66+ можно еще сильнее ионизировать. Для этого на последнем этапе в накопительное кольцо снова инжектировалась газовая струя. Происходило обдирание последнего электрона с иона 163 Ho 66+ и в результате получался ион 163 Ho 67+ . Рядом с газовой струей располагался позиционно-чувствительный детектор, которым регистрировались выбывающие из пучка ионы 163 Ho 67+ . На рис. 3.4 показана зависимость числа образующихся в результате β-распада ядер 163 Ho от времени накопления. На вставке показано пространственное разрешение позиционно-чувствительного детектора.
Таким образом, накопление в пучке 163 Dy ядер 163 Ho явилось доказательством возможности распада

→ + e - + e (в связанном состоянии).


Рис. 3.4. Отношение дочерних ионов 163 Ho 66+ к первичным 163 Dy 66+ в зависимости от времени накопления. На врезке пик 163 Ho 67+ , зарегистрированный внутренним детектором

Варьируя интервал времени между очисткой пучка от примеси Ho 66+ и временем регистрации вновь образующихся в пучке примеси ионов Ho 66+ , можно измерить период полураспада полностью ионизированного изотопа Dy 66+ . Оно оказалось равным ~0.1 года.
Аналогичный распад был обнаружен и для 187 Re 75+ . Полученный результат крайне важен для астрофизики. Дело в том, что нейтральные атомы 187 Re имеют период полураспада 4·10 10 лет и используются как радиоактивные часы. Период полураспада 187 Re 75+ составляет всего 33±2 года. Поэтому в астрофизические измерения необходимо вносить соответствующие поправки, т.к. в звездах 187 Re чаще всего находится в ионизированном состоянии.
Изучение свойств полностью ионизованных атомов открывает новое направление исследований экзотических свойств ядер, лишенных кулоновского воздействия внешней электронной оболочки.

Ядра большинства атомов - это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома .

Удалось установить, что основные виды радиоактивного распада: альфа и бета-распад происходят согласно следующему правилу смещения:

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^238)U→(90^234)Th+(2^4)He.

Альфа-распад - это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада: (19^40)K→(20^40)Ca+(-1^0)e+(0^0)v.

Бета-распад - это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад - это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни - менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие

Бета-распадом ядра называется процесс самопроизвольного превращения нестабильного ядра в ядро-изобар в результате испускания электрона (позитрона) или захвата электрона. Известно около 900 бета-радиоактивных ядер. Из них только 20 являются естественными, остальные получены искусственным путем.

Существует три вида β-распада: электронный β - - распад, позитронный β + - распад и электронный захват(е-захват). Основным видом является первый.

При электронном β - -распаде один из нейтронов ядра превращается в протон с испусканием электрона и электронного антинейтрино.

Примеры: распад свободного нейтрона

Т 1/2 =10,7 мин ;

распад трития

Т 1/2 = 12 лет .

При позитронном β + -распаде один из протонов ядра превращается в нейтрон с испусканием положительно заряженного электрона (позитрона) и электронного нейтрино

В случае электронного е-захвата ядро захватывает электрон с электронной оболочки (чаще К-оболочки) собственного атома.

Бета –распад возможен. когда разность масс начального и конечного ядер превышает сумму масс электрона и нейтрино. Всегда, когда энергетически возможен β + -распад возможен и е -захват. Бета-распад наблюдается у ядер с любым массовым числом. Наблюдаемыми характеристиками при бета-распадах являются период полураспада Т 1/2 , формы энергетических β-спектров и другие характеристики.

Энергия β - -распада лежит в интервале

()0,02 Мэв < Е β < 13,4 Мэв ().

Энергия, выделяющаяся при бета-распаде, распределяется между электроном, нейтрино и дочерним ядром. Спектр испускаемых β-частиц непрерывен от нуля до максимального значения. Формулы для вычисления максимальной энергии бета-распадов :

где - масса материнского ядра, - масса дочернего ядра. m e –масса электрона.

Период полураспада Т 1/2 связан с вероятностью бета- распада соотношением

Вероятность бета-распада сильно зависит от энергии бета-распада ( ~ E β 5 при E β >> m e c 2) поэтому период полураспада Т 1/2 меняется в широких пределах



Loading...Loading...