Обмен веществ и энергии. Разложение органических веществ Распад сложных органических веществ происходит в процессе


Процесс разрушения сложных органических соединений происходит в определенной последовательности и в присутствии катализаторов этих реакций - ферментов, которые выделяются клетками бактерий. Ферменты - сложные белковые соединения (молекулярная масса достигает сотен тысяч н миллионов), ускоряющие биохимические реакции. Ферменты бывают одно- и двухкомпонентные. Двухкомпонентные ферменты состоят из белковой (апофермент) и небелковой (кофермент) части. Каталитической активностью обладает кофермент, а белковый носитель увеличивает его активность.
Различают ферменты, вырабатываемые бактериями для внеклеточного расщепления веществ - экзоферменты и внутренние пищеварительные ферменты - эндоферменты.
143

Особенность ферментов состоит в том, что каждый из них катализирует только одно из многих превращений. Существуют шесть основных ферментных классов: оксиредуктазы; трансферазы; гидралазы; лиозы; изомеразы; лигазы.
Для разрушений сложной смеси органических веществ необходимо 80-100 различных ферментов, каждый из них имеет свою оптимальную температуру, выше которой скорость реакции падает.
Процесс биологического окисления состоит из множества ступеней и начинается с расщепления органического вещества с выделением активного водорода. В этом процессе особую роль играют ферменты класса оксиредуктазы: дегидрогеназы (отнимающие водород от субстрата), каталазы (расщепляющие перекись водорода) и пероксидазы (использующие активированную перекись для окисления других органических соединений).
Существуют вещества, которые повышают активность ферментов - активаторы (витамины, катионы Са, Mg , Mn), и ингибиторы, оказывающие противоположное действие (например, соли тяжелых металлов, антибиотики).
Ферменты, которые постоянно присутствуют в клетках, независимо от субстрата, называются конститутивными. Ферменты, которые синтезируются клетками в ответ на изменение внешней среды, называются адаптивными. Срок адаптации составляет от нескольких часов до сотен дней.
Суммарные реакции биохимического окисления в аэробных условиях можно схематично представить в следующем виде:

где CxHyOzN - все органические вещества сточных вод; АН - энергия; C5H7N02 - условная формула клеточного вещества бактерий.
Реакция (I) показывает характер окисления вещества для удовлетворения энергетических потребностей клетки (катаболический процесс), реакция (II) - для синтеза клеточного вещества (анаболический процесс). Затраты кислорода на эти реакции составляют БПКполн сточной во-

ды. Реакции (III) и (IV) характеризуют превращение клеточного вещества в условиях недостатка питательных веществ. Общий расход кислорода на все 4 реакции приблизительно вдвое больше, чем на (I) и (II).
Большое количество биохимических реакций происходит с помощью кофермента А (или КоА, КоА-SH кофермент ацилирования). Ко- фермент А является производным ^-меркаптоэтиламида пантотеновой кислоты и нуклеотида - аденозин-3,5-дифосфата (C21H36Ol67P3S) с молекулярной массой 767,56. КоА активирует карбоновые кислоты, образуя с ними ацилпроизводные КоА.

Легко окисляются бензойная кислота, этиловый и амиловый спирты, гликоли, глицерин, анилин, сложные эфиры и др. Плохо окисляются нитросоединения, «жесткие» ПАВ, трехатомные спирты и др. Наличие функциональных групп увеличивает способность к биологическому разрушению соединений в такой последовательности:

1 вариант

1. Транскрипция при биосинтезе белка в клетке происходит

  1. В ядре
  2. На рибосомах
  3. На каналах гладкой ЭПС
  4. На мембранах цистерн комплекса Гольджи

2. При трансляции матрицей для сборки полипептидной цепи белка служит(ат)

  1. Две цепи молекулы ДНК
  2. Одна из цепей молекулы ДНК
  3. Молекула иРНК
  4. либо молекула ДНК, либо иРНК

3. Энергетический отличается от пластического обмена тем, что при энергетическом обмене происходит

  1. расходование энергии, заключенной в АТФ
  2. аккумулирование энергии в макроэргических связях АТФ
  3. синтез углеводов и липидов
  4. синтез белков и нуклеиновых кислот

4. Вовлечение органических веществ в энергетический обмен по мере их исчерпания происходит в организме в следующей последовательности:

  1. Углеводы – жиры – белки
  2. Жиры – углеводы – белки
  3. Белки – жиры – углеводы
  4. Углеводы – белки – жиры

5. Важнейшую роль в обеспечении клетки энергией играют молекулы

  1. НАДФ

6. Если нуклеотидный состав ДНК – АТГ-ГЦГ-ТАТ, то нуклеотидный состав иРНК будет

  1. ТАА-ЦГЦ-УТА
  2. ТАА-ГЦГ-УТУ
  3. УАЦ-ЦГЦ-АУА
  4. УАА-ЦГЦ-АТА

а) дыхание;

б) транскрипция;

в) гликолиз

а) в митохондриях;

б) в цитоплазме;

в) в рибосомах

а) гликолизе;

б) дыхании;

в) фотосинтезе

а) солнечная;

б) химическая;

в) тепловая

11.Транскрипции происходит при:

а) фотосинтезе;

Б) катаболизме;

в) анаболизме

Тест по теме: «Обмен веществ»

2 вариант

  1. Универсальный источник энергии в клетке:

а) белок;

б) ДНК;

в) РНК;

г) АТФ

  1. Распад сложных органических веществ происходит в процессе:

а) анаболизма;

б) катаболизма;

в) фотосинтеза

  1. Расходование энергии происходит в процессе:

а) анаболизма;

б) катаболизма;

в) гликолиза

  1. Процесс трансляции при биосинтезе белка происходит:

а) в рибосомах;

б) в митохондриях;

В) в ядре

  1. Образование и - РНК путем «списывания» генетической информации называется:

А) транскрипцией;

Б) трансляцией;

В) редупликацией

  1. Для осуществления фотосинтеза необходимо присутствие:

а) ДНК;

б) РНК;

в) хлорофилла

  1. Световая фаза фотосинтеза происходит:

а) только на свету;

Б) только в темноте;

В) на свету и в темноте

  1. Кислородная стадия энергетического обмена называется:

а) дыхание;

Б) транскрипция;

В) гликолиз

  1. Гликолиз происходит:

а) в митохондриях;

б) в цитоплазме;

в) в рибосомах

  1. При фотосинтезе выделяется побочный продукт:

А) глюкоза;

Б) вода;

В) кислород

  1. При энергетическом обмене используется энергия:

А) солнечная

Б) химическая;

В) тепловая

3 вариант

1. Синтез сложных органических веществ происходит в процессе:

а) анаболизма;

б) катаболизма;

в) пищеварения

2. Освобождение энергии происходит в процессе:

а) анаболизма;

б) катаболизма;

в) трансляции

3. Процесс транскрипции при биосинтезе белка происходит:

а) в рибосомах;

б) в митохондриях;

в) в ядре

4. Создание полимерной цепочки из аминокислот называется:

а) транскрипцией;

б) трансляцией;

В) редупликацией

5. Фотосинтез осуществляется:

а) в рибосомах;

б) в хлоропластах;

В) в митохондриях

6. Темновая фаза фотосинтеза происходит:

а) только на свету;

б) только в темноте;

В) на свету и в темноте

7. Бескислородная стадия энергетического обмена называется:

а) дыхание;

б) транскрипция;

в) гликолиз

8. Кислородное окисление происходит:

а) в митохондриях;

б) в цитоплазме;

в) в рибосомах

9. Образование глюкозы из углекислого газа и воды происходит при:

а) гликолизе;

б) дыхании;

в) фотосинтезе

10. При фотосинтезе используется энергия:

а) солнечная;

б) химическая;

в) тепловая

11. Процесс репликации характерен для:

а) РНК;

Б) ДНК;

В) белка

Тест по теме: «Обмен веществ».

4 вариант

1. В синтезе АТФ не участвует такая структура клетки, как:

А – цитоплазма

Б – ядро

В – митохондрии

Г – хлоропласты

2. Анаэробным гликолизом называется:

В – окислительное фосфолирирование

Г – расщепление АТФ

3. Конечные продукты кислородного окисления органических веществ – это:

А – АТФ и вода

В – вода и углекислый газ

Г – АТФ и кислород

4. Энергия окисления глюкозы идет на:

А – образование кислорода

Б – распад молекул – переносчиков водорода

В – синтез АТФ, а затем используется организмом

Г – синтез углеводов

5. В процессе энергетического обмена не образуется:

А – гликоген

Б – вода

В – углекислый газ

Г – АТФ

6. Аэробный гликолиз идет:

А – в цитоплазме

Б – в митохондриях

Г – на рибосомах

7. Исходным материалом для фотосинтеза служит:

А – кислород и углекислый газ

Б – вода и кислород

В – углекислый газ и вода

Г – углеводы

8. Энергия возбужденных электронов в световой стадии фотосинтеза используется для:

А – синтеза АТФ

Б – синтеза глюкозы

В – синтеза белков

Г – расщепления углеводов

9. Образование глюкозы из углекислого газа и воды происходит при:

а) гликолизе;

б) дыхании;

в) фотосинтезе

10. При фотосинтезе используется энергия:

а) солнечная;

б) химическая;

в) тепловая

Тест по теме: «Обмен веществ».

5 вариант

1. Фотолизом воды называется реакция:

А – 4Н + + е + О 2 = 2Н 2 О

Б – 6СО 2 + 6Н 2 О = С 6 Н 12 О 6

В - 2Н 2 О = 4Н + + 4е + О 2

Г - С 6 Н 12 О 6 = СО 2 + Н 2 О

2. В световой фазе фотосинтеза не происходит:

А – образования глюкозы

Б – фотолиз воды

В – синтез АТФ

Г – образования НАДФ*Н

3. В результате фотосинтеза в хлоропластах образуется:

А – углекислый газ и кислород

Б – глюкоза, АТФ, кислород

В – хлорофилл, вода, кислород

Г – углекислый газ, АТФ, кислород

4. Транскрипция – это процесс:

А – синтеза и-РНК на одной из цепей ДНК

Б – удвоение ДНК

В – считывания информации с и-РНК

Г – присоединения т-РНК к аминокислоте

5. Синтез белков на рибосомах происходит у:

А – всех существующих организмов

Б – всех, кроме грибов

В – всех, кроме прокариот

Г – растений и животных

6. Главным событием интерфазы является:

А – мутационный процесс

Б – удвоение наследственного материала

В – деление ядра клетки

Г – сокращение наследственного материала вдвое

7. Из перечисленных ниже клеток митозом не делятся:

А – оплодотворенные яйцеклетки

Б – споры

В – сперматозоиды

В – клетки эпителия

8. Кислород в процессе дыхания поглощают:

А – животные

Б – растения

В – анаэробные бактерии

Г – А+Б

9. К пластическому обмену относится:

А – анаэробный гликолиз

Б – биосинтез белков

В – биосинтез жиров

Г – Б+В

10. Темновая фаза фотосинтеза происходит:

а) только на свету;

б) только в темноте;

В) на свету и в темноте

Тест по теме: «Обмен веществ».

6 вариант

1. В синтезе АТФ участвует такая структура клетки, как:

А – рибосома

Б – ядро

В – митохондрии

Г – лизосома

2. Аэробным гликолизом называется:

А – совокупность всех реакций энергетического обмена

Б – бескислородное расщепление глюкозы

В – кислородное расщепление глюкозы

Г – расщепление АТФ

3. Конечным продуктом бескислородного окисления органических веществ является:

А – АТФ и вода

Б – кислород и углекислый газ

В – вода и углекислый газ

Г – пировиноградная кислота

4. В процессе анаэробного гликолиза синтезируется

А – 2 молекулы АТФ

Б - 4 молекулы АТФ

В - 36 молекул АТФ

Г - 38 молекул АТФ

5. Кислород выделяется в:

А – темновой фазе фотосинтеза

Б – световой фазе фотосинтеза

В – анаэробном гликолизе

Г – аэробном гликолизе

6. Анаэробный гликолиз идет:

А – в цитоплазме

Б – в митохондриях

В – в пищеварительной системе

Г – на рибосомах

7. В процессе энергетического обмена не образуется:

А – гликоген

Б – вода

В – углекислый газ

Г – АТФ

8. Реакции фотосинтеза, для которых свет действительно необходим – это:

А – поглощение углекислого газа

Б – синтез глюкозы

В – синтез АТФ и НАДФ*Н

Г – образование крахмала

9. Фотолизом воды осуществляется:

А – в световой фазе фотосинтеза

Б - в темновой фазе фотосинтеза

В – при анаэробном гликолизе

Г – при аэробном гликолизе

10. Последовательность аминокислот в молекулах гемоглобина коровы и человека:

А – не отличаются

Б – отличия есть

В – принципиально другая структура

Г – разные аминокислоты

Обмен веществ и энергии, или метаболизм ,— совокупность химических и физических превращений веществ и энергии, происходящих в живом организме и обеспечивающих его жизнедеятельность. Обмен веществ и энергии составляет единое целое и подчиняется закону сохранения материи и энергии.

Обмен веществ складывается из процессов ассимиляции и диссимиляции. Ассимиляция (анаболизм) — процесс усвоения организмом веществ, при котором расходуется энергия. Диссимиляция (катаболизм) — процесс распада сложных органических соединений, протекающий с высвобождением энергии.

Единственным источником энергии для организма человека является окисление органических веществ, поступающих с пищей. При расщеплении пищевых продуктов до конечных элементов — углекислого газа и воды,— выделяется энергия, часть которой переходит в механическую работу, выполняемую мышцами, другая часть используется для синтеза более сложных соединений или накапливается в специальных макроэргических соединениях.

Макроэргическими соединениями называют вещества, расщепление которых сопровождается выделением большого количества энергии. В организме человека роль макроэргических соединений выполняют аденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ).

ОБМЕН БЕЛКОВ .

Белками (протеинами) называют высокомолекулярные соединения, построенные из аминокислот. Функции:

Структурная, или пластическая, функция состоит в том, что белки являются главной составной частью всех клеток и межклеточных структур. Каталитическая, или ферментная, функция белков заключается в их способности ускорять биохимические реакции в организме.

Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях.

Транспортная функция заключается в переносе многих веществ. Важнейшей функцией белков является передача наследственных свойств , в которой ведущую роль играют нуклеопротеиды. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Регуляторная функция белков направлена на поддержание биологических констант в организме.

Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал).

Потребность в белках. В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки расщепляются ферментами до аминокислот и в тонком кишечнике происходит их всасывание. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений.

Биологическая ценность белков. Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми , или жизненно-необходимыми. К ним относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин, а у детей еще аргинин и гистидин. Недостаток незаменимых кислот в пище приводит к нарушениям белкового обмена в организме. Заменимые аминокислоты в основном синтезируются в организме.

Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными . Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Азотистый баланс. Азотистым балансом называют разность между количеством азота, содержащегося в пище человека, и его уровнем в выделениях.

Азотистое равновесие — состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека.

Положительный азотистый баланс — состояние, при котором количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной ткани, при заживлении массивных ран или выздоровлении после тяжелых заболеваний.

Азотистый дефицит (отрицательный азотистый баланс) отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Распад белка и синтез мочевины. Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак.

ОБМЕН ЖИРОВ .

Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин и др.). Основная масса липидов представлена в организме человека нейтральными жирами. Нейтральные жиры пищи человека являются важным источником энергии. При окислении 1 г жира выделяется 37,7 кДж (9,0 ккал) энергии.

Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г, детей 3—10 лет — 26—30 г.

Нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Однако есть ненасыщенные жирные кислоты — линолевая, линоленовая и арахидоновая, которые должны обязательно содержаться в пищевом рационе человека, их называют не заменимыми жирными кислотами .

Нейтральные жиры, входящие в состав пищи и тканей человека, представлены главным образом триглицеридами, содержащими жирные кислоты — пальмитиновую, стеариновую, олеиновую, линолевую и линоленовую.

В обмене жиров важная роль принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон). Кетоновые тела используются как источник энергии.

Фосфо- и гликолипиды входят в состав всех клеток, но главным образом в состав нервных клеток. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови. Холестерин и другие стероиды могут поступать с пищей или синтезироваться в организме. Основным местом синтеза холестерина является печень.

В жировой ткани нейтральный жир депонируется виде триглицеридов.

Образование жиров из углеводов. Избыточное употребление углеводов с пищей приводит к отложению жира в организме. В норме у человека 25—30% углеводов пищи превращается в жиры.

Образование жиров из белков. Белки являются пластическим материалом. Только при чрезвычайных обстоятельствах белки используются для энергетических целей. Превращение белка в жирные кислоты происходит, вероятнее всего, через образование углеводов.

ОБМЕН УГЛЕВОДОВ .

Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции.

Суточная потребность взрослого человека в углеводах составляет около 0,5 кг . Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген — резервный углевод организма.

Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза . Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом . В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается как гликонеогенез . Гликогенез, гликогенолиз и гликонеогенез — тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови.

В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом . В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.

Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.

Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов.

Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты.

ВОДНО-СОЛЕВОЙ ОБМЕН.

Все химические и физико-химические процессы, протекающие в организме, осуществляются в водной среде. Вода выполняет в организме следующие важнейшие функции : 1) служит растворителем продуктов питания и обмена; 2) переносит растворенные в ней вещества; 3) ослабляет трение между соприкасающимися поверхностями в теле человека; 4) участвует в регуляции температуры тела за счет большой теплопроводности, большой теплоты испарения.

Общее содержание воды в организме взрослого человека составляет 50 —60% от его массы, то есть достигает 40—45 л .

Принято делить воду на внутриклеточную, интрацеллюлярную (72%) и внеклеточную, экстрацеллюлярную (28%). Внеклеточная вода размещена внутри сосудистого русла (в составе крови, лимфы, цереброспинальной жидкости) и в межклеточном пространстве.

Вода поступает в организм через пищеварительный тракт в виде жидкости или воды, содержащейся в плотных пищевых продуктах. Некоторая часть воды образуется в самом организме в процессе обмена веществ.

При избытке в организме воды наблюдается общая гипергидратация (водное отравление), при недостатке воды нарушается метаболизм. Потеря 10% воды приводит к состоянию дегидратации (обезвоживание), при потере 20% воды наступает смерть.

Вместе с водой в организм поступают и минеральные вещества (соли). Около 4% сухой массы пищи должны составлять минеральные соединения.

Важной функцией электролитов является участие их в ферментативных реакциях.

Натрий обеспечивает постоянство осмотического давления внеклеточной жидкости, участвует в создании биоэлектрического мембранного потенциала, в регуляции кислотно-основного состояния.

Калий обеспечивает осмотическое давление внутриклеточной жидкости, стимулирует образование ацетилхолина. Недостаток ионов калия тормозит анаболические процессы в организме.

Хлор является также важнейшим анионом внеклеточной жидкости, обеспечивая постоянство осмотического давления.

Кальций и фосфор находятся в основном в костной ткани (свыше 90%). Содержание кальция в плазме и крови является одной из биологических констант, так как даже незначительные сдвиги в уровне этого иона могут приводить к тяжелейшим последствиям для организма. Снижение уровня кальция в крови вызывает непроизвольные сокращения мышц, судороги, и вследствие остановки дыхания наступает смерть. Повышение содержания кальция в крови сопровождается уменьшением возбудимости нервной и мышечной тканей, появлением парезов, параличей, образованием почечных камней. Кальций необходим для построения костей, поэтому он должен поступать в достаточном количестве в организм с пищей.

Фосфор участвует в обмене многих веществ, так как входит в состав макроэргических соединений (например, АТФ). Большое значение имеет отложение фосфора в костях.

Железо входит в состав гемоглобина, миоглобина, ответственных за тканевое дыхание, а также в состав ферментов, участвующих в окислительно-восстановительных реакциях. Недостаточное поступление в организм железа нарушает синтез гемоглобина. Уменьшение синтеза гемоглобина ведет к анемии (малокровию). Суточная потребность в железе взрослого человека составляет 10—30 мкг .

Йод в организме содержится в небольшом количестве. Однако его значение велико. Это связано с тем, что йод входит в состав гормонов щитовидной железы, оказывающих выраженное влияние на все обменные процессы, рост и развитие организма.

Образование и расход энергии.

Энергия, освобождающаяся при распаде органических веществ, накапливается в форме АТФ, количество которой в тканях организма поддерживается на высоком уровне. АТФ содержится в каждой клетке организма. Наибольшее количество ее обнаруживается в скелетных мышцах — 0,2—0,5%. Любая деятельность клетки всегда точно совпадает по времени с распадом АТФ.

Разрушившиеся молекулы АТФ должны восстановиться. Это происходит за счет энергии, которая освобождается при распаде углеводов и других веществ.

О количестве затраченной организмом энергии можно судить по количеству тепла, которое он отдает во внешнюю среду.

Методы измерения затрат энергии (прямая и непрямая калориметрия).

Дыхательный коэффициент.

Прямая калориметрия основана на непосредственном определении тепла, высвобождающегося в процессе жизнедеятельности организма. Человека помещают в специальную калориметрическую камеру, в которой учитывают все количество тепла, отдаваемого телом человека. Тепло, выделяемое организмом, поглощается водой, протекающей по системе труб, проложенных между стенками камеры. Метод очень громоздок, применение его возможно в специальных научных учреждениях. Вследствие этого в практической медицине широко используют метод непрямой калориметрии. Сущность этого метода заключается в том, что сначала определяют объем легочной вентиляции, а затем — количество поглощенного кислорода и выделенного углекислого газа. Отношение объема выделенного углекислого газа к объему поглощенного кислорода носит название дыхательного коэффициента . По величине дыхательного коэффициента можно судить о характере окисляемых веществ в организме.

При окислении углеводов дыхательный коэффициент равен 1 так как для полного окисления 1 молекулы глюкозы до углекислого газа и воды потребуется 6 молекул кислорода, при этом выделяется 6 молекул углекислого газа:

С 6 Н12О 6 +60 2 =6С0 2 +6Н 2 0

Дыхательный коэффициент при окислении белка равен 0,8, при окислении жиров — 0,7.

Определение расхода энергии по газообмену. Количество тепла, высвобождающегося в организме при потреблении 1 л кислорода — калорический эквивалент кислорода — зависит от того, на окислении каких веществ используется кислород. Калорический эквивалент кислорода при окислении углеводов равен 21,13 кДж (5,05 ккал), белков 20,1 кДж (4,8 ккал), жиров — 19,62 кДж (4,686 ккал).

Расход энергии у человека определяют следующим образом. Человек дышит в течение 5 мин, через мундштук (загубник), взятый в рот. Мундштук, соединенный с мешком из прорезиненной ткани, имеет клапаны. Они устроены так, что человек свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок. С помощью газовых часов измеряют объем выдохнутого воздуха. По показателям газоанализатора определяют процентное содержание кислорода и углекислого газа во вдыхаемом и выдыхаемом человеком воздухе. Затем рассчитывают количество поглощенного кислорода и выделенного углекислого газа, а также дыхательный коэффициент. С помощью соответствующей таблицы по величине дыхательного коэффициента устанавливают калорический эквивалент кислорода и определяют расход энергии.

Основной обмен и его значение.

Основной обмен — минимальное количество энергии, необходимое для поддержания нормальной жизнедеятельности организма в состоянии полного покоя при исключении всех внутренних и внешних влияний, которые могли бы повысить уровень обменных процессов. Основной обмен веществ определяют утром натощак (через 12—14 ч после последнего приема пищи), в положении лежа на спине, при полном расслаблении мышц, в условиях температурного комфорта (18—20° С). Выражается основной обмен количеством энергии, выделенной организмом (кДж/сут).

В состоянии полного физического и психического покоя организм расходует энергию на: 1) постоянно совершающиеся химические процессы; 2) механическую работу, выполняемую отдельными органами (сердце, дыхательные мышцы, кровеносные сосуды, кишечник и др.); 3) постоянную деятельность железисто-секреторного аппарата.

Основной обмен веществ зависит от возраста, роста, массы тела, пола. Самый интенсивный основной обмен веществ в расчете на 1 кг массы тела отмечается у детей. С увеличением массы тела усиливается основной обмен веществ. Средняя величина основного обмена веществ у здорового человека равна приблизительно 4,2 кДж (1 ккал) в 1 ч на 1 кг массы тела .

По расходу энергии в состоянии покоя ткани организма неоднородны. Более активно расходуют энергию внутренние органы, менее активно — мышечная ткань.

Интенсивность основного обмена веществ в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Худые люди производят больше тепла на 1 кг массы тела, чем полные.

У женщин основной обмен веществ ниже, чем у мужчин. Это связано с тем, что у женщин меньше масса и поверхность тела. Согласно правилу Рубнера основной обмен веществ приблизительно пропорционален поверхности тела.

Отмечены сезонные колебания величины основного обмена веществ - повышение его весной и снижение зимой. Мышечная деятельность вызывает повышение обмена веществ пропорционально тяжести выполняемой работы.

К значительным изменениям основного обмена приводят нарушения функций органов и систем организма. При повышенной функции щитовидной железы, малярии, брюшном тифе, туберкулезе, сопровождающихся лихорадкой, основной обмен веществ усиливается.

Расход энергии при физической нагрузке.

При мышечной работе значительно увеличиваются энергетические затраты организма. Это увеличение энергетических затрат составляет рабочую прибавку, которая тем больше, чем интенсивнее работа.

По сравнению со сном при медленной ходьбе расход энергии увеличивается в 3 раза, а при беге на короткие дистанции во время соревнований — более чем в 40 раз.

При кратковременных нагрузках энергия расходуется за счет окисления углеводов. При длительных мышечных нагрузках в организме расщепляются преимущественно жиры (80% всей необходимой энергии). У тренированных спортсменов энергия мышечных сокращений обеспечивается исключительно за счет окисления жиров. У человека, занимающегося физическим трудом, энергетические затраты возрастают пропорционально интенсивности труда.

ПИТАНИЕ.

Восполнение энергетических затрат организма происходит за счет питательных веществ. В пище должны содержаться белки, углеводы, жиры, минеральные соли и витамины в небольших количествах и правильном соотношении. Усвояемость пищевых веществ зависит от индивидуальных особенностей и состояния организма, от количества и качества пищи, соотношения различных составных частей ее, способа приготовления. Растительные продукты усваиваются хуже, чем продукты животного происхождения, потому что в растительных продуктах содержится большее количество клетчатки.

Белковый режим питания способствует осуществлению процессов всасывания и усвояемости пищевых веществ. При преобладании в пище углеводов усвоение белков и жиров снижается. Замена растительных продуктов продуктами животного происхождения усиливает обменные процессы в организме. Если вместо растительных давать белки мясных или молочных продуктов, а вместо ржаного хлеба — пшеничный, то усвояемость продуктов питания значительно повышается.

Таким образом, чтобы обеспечить правильное питание человека, необходимо учитывать степень усвоения продуктов организмом. Кроме того, пища должна обязательно содержать все незаменимые (обязательные) питательные вещества: белки и незаменимые аминокислоты, витамины, высоконепредельные жирные кислоты, минеральные вещества и воду.

Основную массу пищи (75-80%) составляют углеводы и жиры.

Пищевой рацион - количество и состав продуктов питания, необходимых человеку в сутки. Он должен восполнять суточные энергетические затраты организма и включать в достаточном количестве все питательные вещества.

Для составления пищевых рационов необходимо знать содержание белков, жиров и углеводов в продуктах и их энергетическую ценность. Имея эти данные, можно составить научно обоснованных пищевой рацион для людей разного возраста, пола и рода занятий.

Режим питания и его физиологическое значение. Необходимо соблюдать определенный режим питания, правильно его организовать: постоянные часы приема пищи, соответствующие интервалы между ними, распределение суточного рациона в течение дня. Принимать пищу следует всегда в определенное время не реже 3 раз в сутки: завтрак, обед и ужин. Завтрак по энергетической ценности должен составлять около 30% от общего рациона, обед — 40—50%, а ужин — 20—25%. Рекомендуется ужинать за 3 ч до сна.

Правильное питание обеспечивает нормальное физическое развитие и психическую деятельность, повышает работоспособность, реактивность и устойчивость организма к влиянию окружающей среды.

Согласно учению И. П. Павлова об условных рефлексах, организм человека приспосабливается к определенному времени приема пищи: появляется аппетит и начинают выделяться пищеварительные соки. Правильные промежутки между приемами пищи обеспечивают чувство сытости в течение этого времени.

Трехкратный прием пищи в общем физиологичен. Однако предпочтительнее четырехразовое питание, при котором повышается усвоение пищевых веществ, в частности белков, не ощущается чувство голода в промежутках между отдельными приемами пищи и сохраняется хороший аппетит. В этом случае энергетическая ценность завтрака составляет 20%, обед — 35%, полдник—15%, ужин — 25%.

Рациональное питание. Питание считается рациональным, если полностью удовлетворяется потребность в пище в количественном и качественном отношении, возмещаются все энергетические затраты. Оно содействует правильному росту и развитию организма, увеличивает его сопротивляемость вредным воздействиям внешней среды, способствует развитию функциональных возможностей организма и повышает интенсивность труда. Рациональное питание предусматривает разработку пищевых рационов и режимов питания применительно к различным контингентам населения и условиям жизни.

Как уже указывалось, питание здорового человека строится на основании суточных пищевых рационов. Рацион и режим питания больного называются диетой. Каждая диета имеет определенные составные части пищевого рациона и характеризуется следующими признаками: 1) энергетической ценностью; 2) химическим составом; 3) физическими свойствами (объем, температура, консистенция); 4)режимом питания.

Регуляция обмена веществ и энергии.

Условнорефлекторные изменения обмена веществ и энергии наблюдаются у человека в предстартовых и предрабочих состояниях. У спортсменов до начала соревнования, а у рабочего перед работой отмечается повышение обмена веществ, температуры тела, увеличивается потребление кислорода и выделение углекислого газа. Можно вызвать условнорефлекторные изменения обмена веществ, энергетических и тепловых процессов у людей на словесный раздражитель.

Влияние нервной системы на обменные и энергетические процессы в организме осуществляется несколькими путями:

Непосредственное влияние нервной системы (через гипоталамус, эфферентные нервы) на ткани и органы;

Опосредованное влияние нервной системы через гипофиз (соматотропин) ;

Опосредованное влияние нервной системы через тропные гормоны гипофиза и периферические железы внутренней секреции;

Прямое влияниенервной системы (гипоталамус) на активность желез внутренней секреции и через них на обменные процессы в тканях и органах.

Основным отделом центральной нервной системы, который регулирует все виды обменных и энергетических процессов, является гипоталамус. Выраженное влияние на обменные процессы и теплообразование оказывают железы внутренней секреции. Гормоны коры надпочечников и щитовидной железы в больших количествах усиливают катаболизм, т. е. распад белков.

В организме ярко проявляется тесное взаимосвязанное влияние нервной и эндокринной систем на обменные и энергетические процессы. Так, возбуждение симпатической нервной системы не только оказывает прямое стимулирующее влияние на обменные процессы, но при этом увеличивается секреция гормонов щитовидной железы и надпочечников (тироксин и адреналин). За счет этого дополнительно усиливается обмен веществ и энергии. Кроме того, эти гормоны сами повышают тонус симпатического отдела нервной системы. Значительные изменения в метаболизме и теплообмене происходят при дефиците в организме гормонов желез внутренней секреции. Например, недостаток тироксина приводит к снижению основного обмена. Это связано с уменьшением потребления кислорода тканями и ослаблением теплообразования. В результате снижается температура тела.

Гормоны желез внутренней секреции участвуют в регуляции обмена веществ и энергии, изменяя проницаемость клеточных мембран (инсулин), активируя ферментные системы организма (адреналин, глюкагон и др.) и влияя на их биосинтез (глюкокортикоиды) .

Таким образом, регуляция обмена веществ и энергии осуществляется нервной и эндокринной системами, которые обеспечивают приспособление организма к меняющимся условиям его обитания.


1 вариант

1. К биополимерам относятся:

А) белки; б) жиры; в) нуклеиновые кислоты; г) минеральные соли

2. Мономерами белков являются: а) нуклеотиды; б) глюкоза; в) аминокислоты

3. Форма двойной спирали характерна для молекулы:

А) белка; б) ДНК; в) РНК; г) крахмала

4. Ферментативная функция характерна для: а) белка; б) ДНК; в) РНК; г) АТФ

5. Синтез сложных органических веществ происходит в процессе:

А) анаболизма; б) катаболизма; в) пищеварения

6. Освобождение энергии происходит в процессе:

А) анаболизма; б) катаболизма; в) трансляции

7. Процесс транскрипции при биосинтезе белка происходит:

8. Создание полимерной цепочки из аминокислот называется:

9. Фотосинтез осуществляется:

А) в рибосомах; б) в хлоропластах; в) в митохондриях

10. Темповая фаза фотосинтеза происходит:

11. Бескислородная стадия энергетического обмена называется:

12. Кислородное окисление происходит:

А) в митохондриях; б) в цитоплазме; в) в рибосомах

13. Образование глюкозы из углекислого газа и воды происходит при:

А) гликолизе; б) дыхании; в) фотосинтезе

14. При фотосинтезе используется энергия:

15. Процесс репликации характерен для: а) РНК; б) ДНК; в) белка

2 вариант

1. В клетку входят органические вещества:

А) белки; б) жиры; в) нуклеиновые кислоты; г) вода

2. Мономерами нуклеиновых кислот являются:

А) нуклеотиды; б) глюкоза; в) аминокислоты

3. Последовательность аминокислот в белке определяет его:

А) первичную структуру; б) вторичную структуру; в) третичную структуру

4. Универсальный источник энергии в клетке: а) белок; б) ДНК; в) РНК; г) АТФ

5. Распад сложных органических веществ происходит в процессе:

А) анаболизма; б) катаболизма; в) фотосинтеза

6. Расходование энергии происходит в процессе:

А) анаболизма; б) катаболизма; в) гликолиза

7. Процесс трансляции при биосинтезе белка происходит:

А) в рибосомах; б) в митохондриях; в) в ядре

8. Образование и - РНК путем «списывания» генетической информации называется:

А) транскрипцией; б) трансляцией; в) редупликацией

9. Для осуществления фотосинтеза необходимо присутствие:

А) ДНК; б) РНК; в) хлорофилла

10. Световая фаза фотосинтеза происходит:

А) только на свету; б) только в темноте; в) на свету и в темноте

11. Кислородная стадия энергетического обмена называется:

А) дыхание; б) транскрипция; в) гликолиз

12. Гликолиз происходит: а) в митохондриях; б) в цитоплазме; в) в рибосомах

13. При фотосинтезе выделяется побочный продукт:

А) глюкоза; б) вода; в) кислород

14. При энергетическом обмене используется энергия:

А) солнечная; б) химическая; в) тепловая

15. Процесс транскрипции происходит при:

А) фотосинтезе; б) катаболизме; в) анаболизме

И. А. Никитина, МБОУ лицей №6, г. Химки, Московская область



Loading...Loading...